CircRNAs Dysregulated in Juvenile Myelomonocytic Leukemia: CircMCTP1 Stands Out
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33490078
PubMed Central
PMC7815690
DOI
10.3389/fcell.2020.613540
Knihovny.cz E-zdroje
- Klíčová slova
- CircRNAs, RNA-Seq, juvenile myelomonocytic leukemia, microRNAs, regulatory networks,
- Publikační typ
- časopisecké články MeSH
Juvenile myelomonocytic leukemia (JMML), a rare myelodysplastic/myeloproliferative neoplasm of early childhood, is characterized by clonal growth of RAS signaling addicted stem cells. JMML subtypes are defined by specific RAS pathway mutations and display distinct gene, microRNA (miRNA) and long non-coding RNA expression profiles. Here we zoom in on circular RNAs (circRNAs), molecules that, when abnormally expressed, may participate in malignant deviation of cellular processes. CirComPara software was used to annotate and quantify circRNAs in RNA-seq data of a "discovery cohort" comprising 19 JMML patients and 3 healthy donors (HD). In an independent set of 12 JMML patients and 6 HD, expression of 27 circRNAs was analyzed by qRT-PCR. CircRNA-miRNA-gene networks were reconstructed using circRNA function prediction and gene expression data. We identified 119 circRNAs dysregulated in JMML and 59 genes showing an imbalance of the circular and linear products. Our data indicated also circRNA expression differences among molecular subgroups of JMML. Validation of a set of deregulated circRNAs in an independent cohort of JMML patients confirmed the down-regulation of circOXNAD1 and circATM, and a marked up-regulation of circLYN, circAFF2, and circMCTP1. A new finding in JMML links up-regulated circMCTP1 with known tumor suppressor miRNAs. This and other predicted interactions with miRNAs connect dysregulated circRNAs to regulatory networks. In conclusion, this study provides insight into the circRNAome of JMML and paves the path to elucidate new molecular disease mechanisms putting forward circMCTP1 up-regulation as a robust example.
Cancer Research Institute Ghent Ghent Belgium
Center for Medical Genetics Ghent University Hospital Ghent Belgium
Department of Biology University of Padova Padua Italy
Department of Diagnostic Sciences Ghent University Hospital Ghent Belgium
Department of Genetics University Hospital of Robert Debré Paris France
Department of Maternal and Child Health Padua University Padua Italy
Department of Molecular Medicine University of Padova Padua Italy
Dutch Childhood Oncology Group The Hague Netherlands
INSERM U1131 Institut de Recherche Saint Louis Université de Paris Paris France
Interdepartmental Research Center for Innovative Biotechnologies University of Padova Padua Italy
Princess Máxima Center for Pediatric Oncology Utrecht Netherlands
Zobrazit více v PubMed
Bell C. C., Fennell K. A., Chan Y.-C., Rambow F., Yeung M. M., Vassiliadis D., et al. (2019). Targeting enhancer switching overcomes non-genetic drug resistance in acute myeloid leukaemia. Nat. Commun. 10:2723. PubMed PMC
Bhat A. A., Younes S. N., Raza S. S., Zarif L., Nisar S., Ahmed I., et al. (2020). Role of non-coding RNA networks in leukemia progression, metastasis and drug resistance. Mol. Cancer 19:57 10.21037/ncri.2018.09.05 PubMed DOI PMC
Bonizzato A., Gaffo E., Te Kronnie G., Bortoluzzi S. (2016). CircRNAs in hematopoiesis and hematological malignancies. Blood Cancer J. 6:e483. 10.1038/bcj.2016.81 PubMed DOI PMC
Bresolin S., Zecca M., Flotho C., Trentin L., Zangrando A., Sainati L., et al. (2010). Gene expression–based classification as an independent predictor of clinical outcome in juvenile Myelomonocytic Leukemia. J. Clin. Oncol. 28 1919–1927. 10.1200/jco.2009.24.4426 PubMed DOI
Buratin A., Paganin M., Gaffo E., Dal Molin A., Roels J., Germano G., et al. (2020). Large-scale circular RNA deregulation in T-ALL: unlocking unique ectopic expression of molecular subtypes. Blood Adv. 4 5902–5914. 10.1182/bloodadvances.2020002337 PubMed DOI PMC
Cao H.-X., Miao C.-F., Sang L.-N., Huang Y.-M., Zhang R., Sun L., et al. (2020). Circ_0009910 promotes imatinib resistance through ULK1-induced autophagy by sponging miR-34a-5p in chronic myeloid leukemia. Life Sci. 243:117255. 10.1016/j.lfs.2020.117255 PubMed DOI
Caye A., Strullu M., Guidez F., Cassinat B., Gazal S., Fenneteau O., et al. (2015). Juvenile myelomonocytic leukemia displays mutations in components of the RAS pathway and the PRC2 network. Nat. Genet. 47 1334–1340. 10.1038/ng.3420 PubMed DOI
Chakraborty S., Kaur S., Guha S., Batra S. K. (2012). The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer. Biochim. Biophys. Acta 1826 129–169. 10.1016/j.bbcan.2012.03.008 PubMed DOI PMC
Chan C. K., Pan Y., Nyberg K., Marra M. A., Lim E. L., Jones S. J. M., et al. (2016). Tumour-suppressor microRNAs regulate ovarian cancer cell physical properties and invasive behaviour. Open Biol. 6:160275. 10.1098/rsob.160275 PubMed DOI PMC
Chao A. K., Meyer J. A., Lee A. G., Hecht A., Tarver T., Van Ziffle J., et al. (2020). Fusion driven JMML: a novel CCDC88C-FLT3 fusion responsive to sorafenib identified by RNA sequencing. Leukemia 34 662–666. 10.1038/s41375-019-0549-y PubMed DOI PMC
Chen B., Wei W., Huang X., Xie X., Kong Y., Dai D., et al. (2018). circEPSTI1 as a prognostic marker and mediator of triple-negative breast cancer progression. Theranostics 8 4003–4015. 10.7150/thno.24106 PubMed DOI PMC
Chen S., Li T., Zhao Q., Xiao B., Guo J. (2017). Using circular RNA hsa_circ_0000190 as a new biomarker in the diagnosis of gastric cancer. Clin. Chim. Acta 466 167–171. 10.1016/j.cca.2017.01.025 PubMed DOI
Chen X., Mao R., Su W., Yang X., Geng Q., Guo C., et al. (2020). Circular RNA circHIPK3 modulates autophagy via MIR124-3p-STAT3-PRKAA/AMPKα signaling in STK11 mutant lung cancer. Autophagy 16 659–671. 10.1080/15548627.2019.1634945 PubMed DOI PMC
Conn S. J., Pillman K. A., Toubia J., Conn V. M., Salmanidis M., Phillips C. A., et al. (2015). The RNA binding protein quaking regulates formation of circRNAs. Cell 160 1125–1134. 10.1016/j.cell.2015.02.014 PubMed DOI
Coppe A., Nogara L., Pizzuto M. S., Cani A., Cesaro S., Masetti R., et al. (2018). Somatic mutations activating Wiskott-Aldrich syndrome protein concomitant with RAS pathway mutations in juvenile myelomonocytic leukemia patients. Hum. Mutat. 39 579–587. 10.1002/humu.23399 PubMed DOI
Du W. W., Yang W., Liu E., Yang Z., Dhaliwal P., Yang B. B. (2016). Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 44 2846–2858. 10.1093/nar/gkw027 PubMed DOI PMC
Fan C.-M., Wang J.-P., Tang Y.-Y., Zhao J., He S.-Y., Xiong F., et al. (2019). circMAN1A2 could serve as a novel serum biomarker for malignant tumors. Cancer Sci. 110 2180–2188. 10.1111/cas.14034 PubMed DOI PMC
Feng X. Q., Nie S. M., Huang J. X., Li T. L., Zhou J. J., Wang W., et al. (2020). Circular RNA circHIPK3 serves as a prognostic marker to promote chronic myeloid leukemia progression. Neoplasma 67 171–177. 10.4149/neo_2018_181129n908 PubMed DOI
Gaffo E., Boldrin E., Dal Molin A., Bresolin S., Bonizzato A., Trentin L., et al. (2019). Circular RNA differential expression in blood cell populations and exploration of circRNA deregulation in pediatric acute lymphoblastic leukemia. Sci. Rep. 9:14670. 10.1038/s41598-019-50864-z PubMed DOI PMC
Gaffo E., Bonizzato A., Kronnie G., Bortoluzzi S. (2017). CirComPara: a multi-method comparative bioinformatics pipeline to detect and study circRNAs from RNA-seq Data. Noncoding RNA 3:8. 10.3390/ncrna3010008 PubMed DOI PMC
Ganguly B. B., Kadam N. N. (2016). Mutations of Myelodysplastic syndromes (MDS): an update. Mutat. Res. Rev. Mut. Res. 769 47–62. 10.1016/j.mrrev.2016.04.009 PubMed DOI
Guan Y., Gong Z., Xiao T., Li Z. (2018). Knockdown of miR-572 suppresses cell proliferation and promotes apoptosis in renal cell carcinoma cells by targeting the NF2/Hippo signaling pathway. Int. J. Clin. Exp. Pathol. 11 5705–5714. PubMed PMC
Guarnerio J., Bezzi M., Jeong J. C., Paffenholz S. V., Berry K., Naldini M. M., et al. (2016). Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations. Cell 166 1055–1056. 10.1016/j.cell.2016.07.035 PubMed DOI
Hansen T. B., Jensen T. I., Clausen B. H., Bramsen J. B., Finsen B., Damgaard C. K., et al. (2013). Natural RNA circles function as efficient microRNA sponges. Nature 495 384–388. 10.1038/nature11993 PubMed DOI
Helsmoortel H. H., Bresolin S., Lammens T., Cavé H., Noellke P., Caye A., et al. (2016). LIN28B overexpression defines a novel fetal-like subgroup of juvenile myelomonocytic leukemia. Blood 127 1163–1172. 10.1182/blood-2015-09-667808 PubMed DOI
Hirsch S., Blätte T. J., Grasedieck S., Cocciardi S., Rouhi A., Jongen-Lavrencic M., et al. (2017). Circular RNAs of the nucleophosmin (NPM1) gene in acute myeloid leukemia. Haematologica 102 2039–2047. 10.3324/haematol.2017.172866 PubMed DOI PMC
Hofmans M., Lammens T., Helsmoortel H. H., Bresolin S., Cavé H., Flotho C., et al. (2018). The long non-coding RNA landscape in juvenile myelomonocytic leukemia. Haematologica 103 e501–e504. 10.3324/haematol.2018.189977 PubMed DOI PMC
Holdt L. M., Kohlmaier A., Teupser D. (2018). Circular RNAs as therapeutic agents and targets. Front. Physiol. 9:1262. PubMed PMC
Jamal M., Song T., Chen B., Faisal M., Hong Z., Xie T., et al. (2019). Recent progress on circular RNA research in acute Myeloid Leukemia. Front. Oncol. 9:1108. PubMed PMC
John B., Enright A. J., Aravin A., Tuschl T., Sander C., Marks D. S. (2004). Human MicroRNA targets. PLoS Biol. 2:e363. 10.1371/journal.pbio.0020363 PubMed DOI PMC
Kertesz M., Iovino N., Unnerstall U., Gaul U., Segal E. (2007). The role of site accessibility in microRNA target recognition. Nat. Genet. 39 1278–1284. 10.1038/ng2135 PubMed DOI
Kregel S., Malik R., Asangani I. A., Wilder-Romans K., Rajendiran T., Xiao L., et al. (2019). Functional and mechanistic interrogation of BET bromodomain degraders for the treatment of metastatic castration-resistant prostate cancer. Clin. Cancer Res. 25 4038–4048. 10.1158/1078-0432.ccr-18-3776 PubMed DOI PMC
Kristensen L. S., Hansen T. B., Venø M. T., Kjems J. (2018). Circular RNAs in cancer: opportunities and challenges in the field. Oncogene 37 555–565. 10.1038/onc.2017.361 PubMed DOI PMC
Leek J. T. (2014). svaseq: removing batch effects and other unwanted noise from sequencing data. Nucleic Acids Res. 42:e161. 10.1093/nar/gku864 PubMed DOI PMC
Legnini I., Di Timoteo G., Rossi F., Morlando M., Briganti F., Sthandier O., et al. (2017). Circ-ZNF609 Is a circular RNA that can be translated and functions in Myogenesis. Mol. Cell 66 22–37.e9. PubMed PMC
Leoncini P. P., Bertaina A., Papaioannou D., Flotho C., Masetti R., Bresolin S., et al. (2016). MicroRNA fingerprints in juvenile myelomonocytic leukemia (JMML) identified miR-150-5p as a tumor suppressor and potential target for treatment. Oncotarget 7 55395–55408. 10.18632/oncotarget.10577 PubMed DOI PMC
Li F., Zhang L., Li W., Deng J., Zheng J., An M., et al. (2015). Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway. Oncotarget 6 6001–6013. 10.18632/oncotarget.3469 PubMed DOI PMC
Li H., Mar B. G., Zhang H., Puram R. V., Vazquez F., Weir B. A., et al. (2017). The EMT regulator ZEB2 is a novel dependency of human and murine acute myeloid leukemia. Blood 129 497–508. 10.1182/blood-2016-05-714493 PubMed DOI PMC
Licursi V., Conte F., Fiscon G., Paci P. (2019). MIENTURNET: an interactive web tool for microRNA-target enrichment and network-based analysis. BMC Bioinformatics 20:545. PubMed PMC
Lin Y., Li D., Liang Q., Liu S., Zuo X., Li L., et al. (2015). miR-638 regulates differentiation and proliferation in leukemic cells by targeting cyclin-dependent kinase 2. J. Biol. Chem. 290 1818–1828. 10.1074/jbc.m114.599191 PubMed DOI PMC
Lipka D. B., Witte T., Toth R., Yang J., Wiesenfarth M., Nöllke P., et al. (2017). RAS-pathway mutation patterns define epigenetic subclasses in juvenile myelomonocytic leukemia. Nat. Commun. 8:2126. PubMed PMC
Locatelli F., Niemeyer C. M. (2015). How i treat juvenile myelomonocytic leukemia. Blood 125 1083–1090. 10.1182/blood-2014-08-550483 PubMed DOI
Love M. I., Huber W., Anders S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:550. PubMed PMC
Manafi Shabestari R., Alikarami F., Bashash D., Paridar M., Safa M. (2018). Overexpression of MiR-138 inhibits cell growth and induces caspase-mediated apoptosis in acute Promyelocytic Leukemia cell line. Int. J. Mol. Cell Med. 7 24–31. PubMed PMC
Memczak S., Jens M., Elefsinioti A., Torti F., Krueger J., Rybak A., et al. (2013). Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495 333–338. 10.1038/nature11928 PubMed DOI
Molin A. D., Bresolin S., Gaffo E., Tretti C., Boldrin E., Meyer L. H., et al. (2019). CircRNAs are here to stay: a perspective on the MLL recombinome. Front. Genet. 10:88. 10.3389/fgene.2019.00088 PubMed DOI PMC
Murakami N., Okuno Y., Yoshida K., Shiraishi Y., Nagae G., Suzuki K., et al. (2018). Integrated molecular profiling of juvenile myelomonocytic leukemia. Blood 131 1576–1586. PubMed
Niemeyer C. M. (2014). RAS diseases in children. Haematologica 99 1653–1662. 10.3324/haematol.2014.114595 PubMed DOI PMC
Niemeyer C. M., Arico M., Basso G., Biondi A., Cantu Rajnoldi A., Creutzig U., et al. (1997). Chronic myelomonocytic leukemia in childhood: a retrospective analysis of 110 cases. european working group on myelodysplastic syndromes in childhood (EWOG-MDS). Blood 89 3534–3543. PubMed
Ning L., Long B., Zhang W., Yu M., Wang S., Cao D., et al. (2018). Circular RNA profiling reveals circEXOC6B and circN4BP2L2 as novel prognostic biomarkers in epithelial ovarian cancer. Int. J. Oncol. 53 2637–2646. 10.3892/ijo.2018.4566 PubMed DOI
Pamudurti N. R., Bartok O., Jens M., Ashwal-Fluss R., Stottmeister C., Ruhe L., et al. (2017). Translation of CircRNAs. Mol. Cell 66 9–21.e7. PubMed PMC
Rastgoo N., Pourabdollah M., Abdi J., Reece D., Chang H. (2018). Dysregulation of EZH2/miR-138 axis contributes to drug resistance in multiple myeloma by downregulating RBPMS. Leukemia 32 2471–2482. 10.1038/s41375-018-0140-y PubMed DOI
Rossi F., Legnini I., Megiorni F., Colantoni A., Santini T., Morlando M., et al. (2019). Circ-ZNF609 regulates G1-S progression in rhabdomyosarcoma. Oncogene 38:1. PubMed PMC
Schneider T., Hung L.-H., Schreiner S., Starke S., Eckhof H., Rossbach O., et al. (2016). CircRNA-protein complexes: IMP3 protein component defines subfamily of circRNPs. Sci. Rep. 6:31313. PubMed PMC
Shang J., Chen W.-M., Liu S., Wang Z.-H., Wei T.-N., Chen Z.-Z., et al. (2019a). CircPAN3 contributes to drug resistance in acute myeloid leukemia through regulation of autophagy. Leuk. Res. 85:106198. 10.1016/j.leukres.2019.106198 PubMed DOI
Shang J., Chen W.-M., Wang Z.-H., Wei T.-N., Chen Z.-Z., Wu W.-B. (2019b). CircPAN3 mediates drug resistance in acute myeloid leukemia through the miR-153-5p/miR-183-5p–XIAP axis. Exp. Hematol. 70 42–54.e3. PubMed
Song T., Xu A., Zhang Z., Gao F., Zhao L., Chen X., et al. (2019). CircRNA hsa_circRNA_101996 increases cervical cancer proliferation and invasion through activating TPX2 expression by restraining miR-8075. J. Cell. Physiol. 234 14296–14305. 10.1002/jcp.28128 PubMed DOI
Stieglitz E., Mazor T., Olshen A. B., Geng H., Gelston L. C., Akutagawa J., et al. (2017). Genome-wide DNA methylation is predictive of outcome in juvenile myelomonocytic leukemia. Nat. Commun. 8:2127. PubMed PMC
Stieglitz E., Taylor-Weiner A. N., Chang T. Y., Gelston L. C., Wang Y.-D., Mazor T., et al. (2015). The genomic landscape of juvenile myelomonocytic leukemia. Nat. Genet. 47 1326–1333. PubMed PMC
Sun Y.-M., Wang W.-T., Zeng Z.-C., Chen T.-Q., Han C., Pan Q., et al. (2019). circMYBL2, a circRNA from MYBL2, regulates FLT3 translation by recruiting PTBP1 to promote FLT3-ITD AML progression. Blood 134 1533–1546. 10.1182/blood.2019000802 PubMed DOI PMC
Wu D.-M., Wen X., Han X.-R., Wang S., Wang Y.-J., Shen M., et al. (2018b). Role of circular RNA DLEU2 in human acute Myeloid Leukemia. Mol. Cell. Biol. 38:e00259-18. PubMed PMC
Wu J., Jiang Z., Chen C., Hu Q., Fu Z., Chen J., et al. (2018a). CircIRAK3 sponges miR-3607 to facilitate breast cancer metastasis. Cancer Lett 430 179–192. 10.1016/j.canlet.2018.05.033 PubMed DOI
Yang Y., Fan X., Mao M., Song X., Wu P., Zhang Y., et al. (2017). Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res 27 626–641. 10.1038/cr.2017.31 PubMed DOI PMC
Yi Y.-Y., Yi J., Zhu X., Zhang J., Zhou J., Tang X., et al. (2019). Circular RNA of vimentin expression as a valuable predictor for acute myeloid leukemia development and prognosis. J. Cell. Physiol. 234 3711–3719. 10.1002/jcp.27145 PubMed DOI
Zheng Q., Bao C., Guo W., Li S., Chen J., Chen B., et al. (2016). Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat. Commun. 7:11215. PubMed PMC
Zhou J., Zhou L.-Y., Tang X., Zhang J., Zhai L.-L., Yi Y. Y., et al. (2019). Circ-Foxo3 is positively associated with the Foxo3 gene and leads to better prognosis of acute myeloid leukemia patients. BMC Cancer 19:930. PubMed PMC