Molecular Evolution of Antigen-Processing Genes in Salamanders: Do They Coevolve with MHC Class I Genes?
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33501944
PubMed Central
PMC7883663
DOI
10.1093/gbe/evaa259
PII: 6121093
Knihovny.cz E-zdroje
- Klíčová slova
- MHC, PSMB lineages, antigen-processing genes, coevolution, molecular evolution, salamanders,
- MeSH
- duplikace genu MeSH
- genetická vazba MeSH
- geny MHC třídy I * MeSH
- molekulární evoluce * MeSH
- prezentace antigenu genetika MeSH
- proteiny obojživelníků chemie klasifikace genetika MeSH
- Urodela genetika imunologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteiny obojživelníků MeSH
Proteins encoded by antigen-processing genes (APGs) prepare antigens for presentation by the major histocompatibility complex class I (MHC I) molecules. Coevolution between APGs and MHC I genes has been proposed as the ancestral gnathostome condition. The hypothesis predicts a single highly expressed MHC I gene and tight linkage between APGs and MHC I. In addition, APGs should evolve under positive selection, a consequence of the adaptive evolution in MHC I. The presence of multiple highly expressed MHC I genes in some teleosts, birds, and urodeles appears incompatible with the coevolution hypothesis. Here, we use urodele amphibians to test two key expectations derived from the coevolution hypothesis: 1) the linkage between APGs and MHC I was studied in Lissotriton newts and 2) the evidence for adaptive evolution in APGs was assessed using 42 urodele species comprising 21 genera from seven families. We demonstrated that five APGs (PSMB8, PSMB9, TAP1, TAP2, and TAPBP) are tightly linked (<0.5 cM) to MHC I. Although all APGs showed some codons under episodic positive selection, we did not find a pervasive signal of positive selection expected under the coevolution hypothesis. Gene duplications, putative gene losses, and divergent allelic lineages detected in some APGs demonstrate considerable evolutionary dynamics of APGs in salamanders. Overall, our results indicate that if coevolution between APGs and MHC I occurred in urodeles, it would be more complex than envisaged in the original formulation of the hypothesis.
Department of Environmental Sciences and Policy University of Milano Italy
Department of Integrative Biology Oklahoma State University Stillwater Oklahoma USA
Department of Zoology Faculty of Science Charles University Prague Czech Republic
Ecology and Evolutionary Biology University of Connecticut Storrs Connecticut USA
Institute of Biology Leiden Leiden University The Netherlands
Institute of Environmental Sciences Faculty of Biology Jagiellonian University Kraków Poland
Naturalis Biodiversity Center Leiden The Netherlands
School of Biological Sciences Seoul National University South Korea
Zobrazit více v PubMed
Abdullayev I, Kirkham M, Björklund ÅK, Simon A, Sandberg R. 2013. A reference transcriptome and inferred proteome for the salamander Notophthalmus viridescens. Exp Cell Res. 319(8):1187–1197. PubMed
Anisimova M, Bielawski JP, Yang Z. 2001. Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution. Mol Biol Evol. 18(8):1585–1592. PubMed
Babik W, et al. 2009. Long-term survival of a urodele amphibian despite depleted major histocompatibility complex variation. Mol Ecol. 18(5):769–781. PubMed
Blees A, et al. 2017. Structure of the human MHC-I peptide-loading complex. Nature 551(7681):525–528. PubMed
Blum JS, Wearsch PA, Cresswell P. 2013. Pathways of antigen processing. Annu Rev Immunol. 31(1):443–473. PubMed PMC
Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. PubMed PMC
Bos DH, DeWoody JA. 2005. Molecular characterization of major histocompatibility complex class II alleles in wild tiger salamanders (Ambystoma tigrinum). Immunogenetics 57(10):775–781. PubMed
Bryant DM, et al. 2017. A tissue-mapped axolotl de novo transcriptome enables identification of limb regeneration factors. Cell Rep. 18(3):762–776. PubMed PMC
Burns JA, Zhang H, Hill E, Kim E, Kerney R. 2017. Transcriptome analysis illuminates the nature of the intracellular interaction in a vertebrate-algal symbiosis. Elife 6:e22054. PubMed PMC
Che R, Sun Y, Wang R, Xu T. 2014. Transcriptomic analysis of endangered Chinese salamander: identification of immune, sex and reproduction-related genes and genetic markers. PLoS One 9(1):e87940. PubMed PMC
Drews A, Westerdahl H. 2019. Not all birds have a single dominantly expressed MHC-I gene: transcription suggests that siskins have many highly expressed MHC-I genes. Sci Rep. 9:1–11. PubMed PMC
Dudek K, Gaczorek T, Zieliński P, Babik W. 2019. Massive introgression of MHC genes in newt hybrid zones. Mol Ecol. 28(21):4798–4810. PubMed
Elewa A, et al. 2017. Reading and editing the Pleurodeles waltl genome reveals novel features of tetrapod regeneration. Nat Commun. 8:2286. PubMed PMC
Farrer RA, et al. 2017. Genomic innovations linked to infection strategies across emerging pathogenic chytrid fungi. Nat Commun. 8:14742. PubMed PMC
Ferrington DA, Gregerson DS. 2012. Immunoproteasomes: structure, function, and antigen presentation. Prog Mol Biol Trans Sci. 109:75–112. PubMed PMC
Fijarczyk A, Dudek K, Babik W. 2016. Selective landscapes in newt immune genes inferred from patterns of nucleotide variation. Genome Biol Evol. 8(11):3417–3432. PubMed PMC
Fijarczyk A, Dudek K, Niedzicka M, Babik W. 2018. Balancing selection and introgression of newt immune-response genes. Proc R Soc B. 285(1884):20180819. PubMed PMC
Fisette O, Wingbermühle S, Tampé R, Schäfer LV. 2016. Molecular mechanism of peptide editing in the tapasin–MHC I complex. Sci Rep. 6:19085. PubMed PMC
Flajnik MF. 2018. A cold-blooded view of adaptive immunity. Nat Rev Immunol. 18(7):438–453. PubMed PMC
Flajnik MF, Kasahara M. 2010. Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat Rev Genet. 11(1):47–59. PubMed PMC
Flajnik MF, et al. 1999. Two ancient allelic lineages at the single classical class I locus in the Xenopus MHC. J Immunol. 163:3826–3833. PubMed
Forni D, et al. 2014. An evolutionary analysis of antigen processing and presentation across different timescales reveals pervasive selection. PLoS Genet. 10(3):e1004189. PubMed PMC
Grabherr MG, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 29(7):644–652. PubMed PMC
Green P, Falls K, Crooks S. 1990. Documentation for CRI-MAP, version 2.4 (3/26/90). St Louis (MO): Washington University School of Medicine.
Huang C-H, Tanaka Y, Fujito NT, Nonaka M. 2013. Dimorphisms of the proteasome subunit beta type 8 gene (PSMB8) of ectothermic tetrapods originated in multiple independent evolutionary events. Immunogenetics 65(11):811–821. PubMed
Huang Y, Xiong JL, Gao XC, Sun XH. 2017. Transcriptome analysis of the Chinese giant salamander (Andrias davidianus) using RNA-sequencing. Genomics Data 14:126–131. PubMed PMC
Irisarri I, et al. 2017. Phylotranscriptomic consolidation of the jawed vertebrate timetree. Nat Ecol Evol. 1(9):1370–1378. PubMed PMC
Jetz W, Pyron RA. 2018. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat Ecol Evol. 2(5):850–858. PubMed
Joly E, et al. 1998. Co-evolution of rat TAP transporters and MHC class I RT1-A molecules. Curr Biol. 8(3):169–180. PubMed
Kabsch W, Sander C. 1983. Dictionary of protein secondary structure: pattern recognition of hydrogen‐bonded and geometrical features. Biopolymers 22(12):2577–2637. PubMed
Kandil E, et al. 1996. Isolation of low molecular mass polypeptide complementary DNA clones from primitive vertebrates. Implications for the origin of MHC class I-restricted antigen presentation. J Immunol. 156(11):4245–4253. PubMed
Kasahara M, Flajnik MF. 2019. Origin and evolution of the specialized forms of proteasomes involved in antigen presentation. Immunogenetics 71(3):251–261. PubMed PMC
Kaufman J. 1999. Co-evolving genes in MHC haplotypes: the “rule” for nonmammalian vertebrates? Immunogenetics 50(3–4):228–236. PubMed
Kaufman J. 2015. Co‐evolution with chicken class I genes. Immunol Rev. 267(1):56–71. PubMed
Kaufman J. 2018. Unfinished business: evolution of the MHC and the adaptive immune system of jawed vertebrates. Annu Rev Immunol. 36(1):383–409. PubMed
Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SD. 2006. GARD: a genetic algorithm for recombination detection. Bioinformatics 22(24):3096–3098. PubMed
Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 33(7):1870–1874. PubMed PMC
Laurentino TG, et al. 2020. Genomic release-recapture experiment in the wild reveals within-generation polygenic selection in stickleback fish. Nat Commun. 11:1–9. PubMed PMC
Lehnert E, Tampé R. 2017. Structure and dynamics of antigenic peptides in complex with TAP. Front Immunol. 8:10. PubMed PMC
Madison-Villar M, Sun C, Lau NC, Settles ML, Mueller RL. 2016. Small RNAs from a big genome: the piRNA pathway and transposable elements in the salamander species Desmognathus fuscus. J Mol Evol. 83(3–4):126–136. PubMed
Maghrabi AH, McGuffin LJ. 2017. ModFOLD6: an accuate web server for the global and local quality estimation of 3D protein models. Nucleic Acid Res. 45(W1):W416–W421. PubMed PMC
McConnell SC, et al. 2016. Alternative haplotypes of antigen processing genes in zebrafish diverged early in vertebrate evolution. Proc Natl Acad Sci USA. 113(34):E5014–E5023. PubMed PMC
McElroy KE, et al. 2017. Genome expression balance in a triploid trihybrid vertebrate. Genome Biol Evol. 9(4):968–980. PubMed PMC
Miura F, et al. 2010. Transspecies dimorphic allelic lineages of the proteasome subunit β-type 8 gene (PSMB8) in the teleost genus Oryzias. Proc Natl Acad Sci USA. 107(50):21599–21604. PubMed PMC
Müller V, De Boer RJ, Bonhoeffer S, Szathmáry E. 2018. An evolutionary perspective on the systems of adaptive immunity. Biol Rev. 93(1):505–528. PubMed
Murata S, Takahama Y, Kasahara M, Tanaka K. 2018. The immunoproteasome and thymoproteasome: functions, evolution and human disease. Nat Immunol. 19(9):923–931. PubMed
Murphy K, Weaver C. 2016. Janeway’s immunobiology. New York: Garland Science.
Murrell B, et al. 2013. FUBAR: a fast, unconstrained bayesian approximation for inferring selection. Mol Biol Evol. 30(5):1196–1205. PubMed PMC
Murrell B, et al. 2012. Detecting individual sites subject to episodic diversifying selection. PLoS Genet. 8(7):e1002764. PubMed PMC
Namikawa C, et al. 1995. Isolation of Xenopus LMP-7 homologues. Striking allelic diversity and linkage to MHC. J Immunol. 155(4):1964–1971. PubMed
Niedzicka M, Fijarczyk A, Dudek K, Stuglik M, Babik W. 2016. Molecular inversion probes for targeted resequencing in non-model organisms. Sci Rep. 6:24051. PubMed PMC
Nonaka M, Yamada-Namikawa C, Flajnik MF, Du Pasquier L. 2000. Trans-species polymorphism of the major histocompatibility complex-encoded proteasome subunit LMP7 in an amphibian genus, Xenopus. Immunogenetics 51(3):186–192. PubMed
Nourisson C, Muñoz‐Merida A, Carneiro M, Sequeira F. 2017. De novo transcriptome assembly and polymorphism detection in two highly divergent evolutionary units of Bosca’s newt (Lissotriton boscai) endemic to the Iberian Peninsula. Mol Ecol Resour. 17(3):546–549. PubMed
Ohta Y, Flajnik MF. 2015. Coevolution of MHC genes (LMP/TAP/class Ia, NKT‐class Ib, NKp30‐B7H6): lessons from cold‐blooded vertebrates. Immunol Rev. 267(1):6–15. PubMed PMC
Ohta Y, Goetz W, Hossain MZ, Nonaka M, Flajnik MF. 2006. Ancestral organization of the MHC revealed in the amphibian Xenopus. J Immunol. 176(6):3674–3685. PubMed
Ohta Y, et al. 2003. Two highly divergent ancient allelic lineages of the transporter associated with antigen processing (TAP) gene in Xenopus: further evidence for co‐evolution among MHC class I region genes. Eur J Immunol. 33(11):3017–3027. PubMed
Oldham ML, et al. 2016. A mechanism of viral immune evasion revealed by cryo-EM analysis of the TAP transporter. Nature 529(7587):537–540. PubMed PMC
Paulsson KM. 2004. Evolutionary and functional perspectives of the major histocompatibility complex class I antigen-processing machinery. CMLS: Cell Mol Life Sci. 61(19–20):2446–2460. PubMed PMC
Petryszak R, et al. 2016. Expression Atlas update—an integrated database of gene and protein expression in humans, animals and plants. Nucleic Acids Res. 44(D1):D746–D752. PubMed PMC
Radwan J, Babik W, Kaufman J, Lenz TL, Winternitz J. 2020. Advances in the evolutionary understanding of MHC polymorphism. Trends Genet. 36(4):298–311. PubMed
Rancilhac L, et al. Forthcoming 2021. Phylotranscriptomic evidence for pervasive ancient hybridization among Old World salamanders. Mol Phylogenet Evol. 155:106967. PubMed
Rodríguez A, et al. 2017. Inferring the shallow phylogeny of true salamanders (Salamandra) by multiple phylogenomic approaches. Mol Phylogenet Evol. 115:16–26. PubMed
Rousset F. 2008. GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Res. 8(1):103–106. PubMed
Salter-Cid L, Nonaka M, Flajnik MF. 1998. Expression of MHC class Ia and class Ib during ontogeny: high expression in epithelia and coregulation of class Ia and lmp7 genes. J Immunol. 160(6):2853–2861. PubMed
Sammut B, et al. 1999. Axolotl MHC architecture and polymorphism. Eur J Immunol. 29(9):2897–2907. PubMed
Schrödinger LLC. 2019. The PyMOL Molecular Graphics System, V2. 0.0. New York (NY): Schrödinger, LLC.
Smith JJ, et al. 2019. A chromosome-scale assembly of the axolotl genome. Genome Res. 29(2):317–324. PubMed PMC
Sousounis K, et al. 2015. A robust transcriptional program in newts undergoing multiple events of lens regeneration throughout their lifespan. Elife 4:e09594. PubMed PMC
Stuglik MT, Babik W. 2016. Genomic heterogeneity of historical gene flow between two species of newts inferred from transcriptome data. Ecol Evol. 6(13):4513–4525. PubMed PMC
Tien MZ, Meyer AG, Sydykova DK, Spielman SJ, Wilke CO. 2013. Maximum allowed solvent accessibilites of residues in proteins. PLoS One 8(11):e80635. PubMed PMC
Tournefier A, et al. 1998. Structure of MHC class I and class II cDNAs and possible immunodeficiency linked to class II expression in the Mexican axolotl. Immunol Rev. 166(1):259–277. PubMed
Tsukamoto K, Miura F, Fujito NT, Yoshizaki G, Nonaka M. 2012. Long-lived dichotomous lineages of the proteasome subunit beta type 8 (PSMB8) gene surviving more than 500 million years as alleles or paralogs. Mol Biol Evol. 29(10):3071–3079. PubMed
van Hateren A, et al. 2013. A mechanistic basis for the co-evolution of chicken tapasin and major histocompatibility complex class I (MHC I) proteins. J Biol Chem. 288(45):32797–32808. PubMed PMC
Walker BA, et al. 2011. The dominantly expressed class I molecule of the chicken MHC is explained by coevolution with the polymorphic peptide transporter (TAP) genes. Proc Natl Acad Sci USA. 108(20):8396–8401. PubMed PMC
Walter L. 2020. Nomenclature report on the major histocompatibility complex genes and alleles of the laboratory rat (Rattus norvegicus). Immunogenetics 72(1–2):5–8. PubMed
Weaver S, et al. 2018. Datamonkey 2.0: a modern web application for characterizing selective and other evolutionary processes. Mol Biol Evol. 35(3):773–777. PubMed PMC
Webb B, Sali A. 2016. Comparative protein structure modeling using MODELLER. Curr Protoc Bioinformatics. 54(1):5.6.1–5.6.37. PubMed PMC
Wielstra B, Burke T, Butlin R, Arntzen J. 2017. A signature of dynamic biogeography: enclaves indicate past species replacement. Proc R Soc B. 284(1868):20172014. PubMed PMC
Wielstra B, et al. 2017. A genomic footprint of hybrid zone movement in crested newts. Evol Lett. 1(2):93–101. PubMed PMC
Wielstra B, McCartney-Melstad E, Arntzen J, Butlin RK, Shaffer HB. 2019. Phylogenomics of the adaptive radiation of Triturus newts supports gradual ecological niche expansion towards an incrementally aquatic lifestyle. Mol Phylogenet Evol. 133:120–127. PubMed
Yamaguchi T, Dijkstra JM. 2019. Major histocompatibility complex (MHC) genes and disease resistance in fish. Cells 8:378. PubMed PMC
Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 24(8):1586–1591. PubMed
Yang Z. 2019. Adaptive molecular evolution. In: Balding DJ, Moltke I, Marioni J, editors. Handbook of statistical genomics. Oxford: Wiley. p. 369–396.
Zhang JZ, Nielsen R, Yang ZH. 2005. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol. 22(12):2472–2479. PubMed