Molecular Evolution of Antigen-Processing Genes in Salamanders: Do They Coevolve with MHC Class I Genes?

. 2021 Feb 03 ; 13 (2) : .

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33501944

Proteins encoded by antigen-processing genes (APGs) prepare antigens for presentation by the major histocompatibility complex class I (MHC I) molecules. Coevolution between APGs and MHC I genes has been proposed as the ancestral gnathostome condition. The hypothesis predicts a single highly expressed MHC I gene and tight linkage between APGs and MHC I. In addition, APGs should evolve under positive selection, a consequence of the adaptive evolution in MHC I. The presence of multiple highly expressed MHC I genes in some teleosts, birds, and urodeles appears incompatible with the coevolution hypothesis. Here, we use urodele amphibians to test two key expectations derived from the coevolution hypothesis: 1) the linkage between APGs and MHC I was studied in Lissotriton newts and 2) the evidence for adaptive evolution in APGs was assessed using 42 urodele species comprising 21 genera from seven families. We demonstrated that five APGs (PSMB8, PSMB9, TAP1, TAP2, and TAPBP) are tightly linked (<0.5 cM) to MHC I. Although all APGs showed some codons under episodic positive selection, we did not find a pervasive signal of positive selection expected under the coevolution hypothesis. Gene duplications, putative gene losses, and divergent allelic lineages detected in some APGs demonstrate considerable evolutionary dynamics of APGs in salamanders. Overall, our results indicate that if coevolution between APGs and MHC I occurred in urodeles, it would be more complex than envisaged in the original formulation of the hypothesis.

Erratum v

PubMed

Zobrazit více v PubMed

Abdullayev I, Kirkham M, Björklund ÅK, Simon A, Sandberg R. 2013. A reference transcriptome and inferred proteome for the salamander Notophthalmus viridescens. Exp Cell Res. 319(8):1187–1197. PubMed

Anisimova M, Bielawski JP, Yang Z. 2001. Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution. Mol Biol Evol. 18(8):1585–1592. PubMed

Babik W, et al.  2009. Long-term survival of a urodele amphibian despite depleted major histocompatibility complex variation. Mol Ecol. 18(5):769–781. PubMed

Blees A, et al.  2017. Structure of the human MHC-I peptide-loading complex. Nature  551(7681):525–528. PubMed

Blum JS, Wearsch PA, Cresswell P. 2013. Pathways of antigen processing. Annu Rev Immunol. 31(1):443–473. PubMed PMC

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics  30(15):2114–2120. PubMed PMC

Bos DH, DeWoody JA. 2005. Molecular characterization of major histocompatibility complex class II alleles in wild tiger salamanders (Ambystoma tigrinum). Immunogenetics  57(10):775–781. PubMed

Bryant DM, et al.  2017. A tissue-mapped axolotl de novo transcriptome enables identification of limb regeneration factors. Cell Rep. 18(3):762–776. PubMed PMC

Burns JA, Zhang H, Hill E, Kim E, Kerney R. 2017. Transcriptome analysis illuminates the nature of the intracellular interaction in a vertebrate-algal symbiosis. Elife  6:e22054. PubMed PMC

Che R, Sun Y, Wang R, Xu T. 2014. Transcriptomic analysis of endangered Chinese salamander: identification of immune, sex and reproduction-related genes and genetic markers. PLoS One  9(1):e87940. PubMed PMC

Drews A, Westerdahl H. 2019. Not all birds have a single dominantly expressed MHC-I gene: transcription suggests that siskins have many highly expressed MHC-I genes. Sci Rep. 9:1–11. PubMed PMC

Dudek K, Gaczorek T, Zieliński P, Babik W. 2019. Massive introgression of MHC genes in newt hybrid zones. Mol Ecol. 28(21):4798–4810. PubMed

Elewa A, et al.  2017. Reading and editing the Pleurodeles waltl genome reveals novel features of tetrapod regeneration. Nat Commun. 8:2286. PubMed PMC

Farrer RA, et al.  2017. Genomic innovations linked to infection strategies across emerging pathogenic chytrid fungi. Nat Commun. 8:14742. PubMed PMC

Ferrington DA, Gregerson DS. 2012. Immunoproteasomes: structure, function, and antigen presentation. Prog Mol Biol Trans Sci. 109:75–112. PubMed PMC

Fijarczyk A, Dudek K, Babik W. 2016. Selective landscapes in newt immune genes inferred from patterns of nucleotide variation. Genome Biol Evol. 8(11):3417–3432. PubMed PMC

Fijarczyk A, Dudek K, Niedzicka M, Babik W. 2018. Balancing selection and introgression of newt immune-response genes. Proc R Soc B. 285(1884):20180819. PubMed PMC

Fisette O, Wingbermühle S, Tampé R, Schäfer LV. 2016. Molecular mechanism of peptide editing in the tapasin–MHC I complex. Sci Rep. 6:19085. PubMed PMC

Flajnik MF. 2018. A cold-blooded view of adaptive immunity. Nat Rev Immunol. 18(7):438–453. PubMed PMC

Flajnik MF, Kasahara M. 2010. Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat Rev Genet. 11(1):47–59. PubMed PMC

Flajnik MF, et al.  1999. Two ancient allelic lineages at the single classical class I locus in the Xenopus  MHC. J Immunol. 163:3826–3833. PubMed

Forni D, et al.  2014. An evolutionary analysis of antigen processing and presentation across different timescales reveals pervasive selection. PLoS Genet. 10(3):e1004189. PubMed PMC

Grabherr MG, et al.  2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 29(7):644–652. PubMed PMC

Green P, Falls K, Crooks S. 1990. Documentation for CRI-MAP, version 2.4 (3/26/90). St Louis (MO): Washington University School of Medicine.

Huang C-H, Tanaka Y, Fujito NT, Nonaka M. 2013. Dimorphisms of the proteasome subunit beta type 8 gene (PSMB8) of ectothermic tetrapods originated in multiple independent evolutionary events. Immunogenetics  65(11):811–821. PubMed

Huang Y, Xiong JL, Gao XC, Sun XH. 2017. Transcriptome analysis of the Chinese giant salamander (Andrias davidianus) using RNA-sequencing. Genomics Data  14:126–131. PubMed PMC

Irisarri I, et al.  2017. Phylotranscriptomic consolidation of the jawed vertebrate timetree. Nat Ecol Evol. 1(9):1370–1378. PubMed PMC

Jetz W, Pyron RA. 2018. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat Ecol Evol. 2(5):850–858. PubMed

Joly E, et al.  1998. Co-evolution of rat TAP transporters and MHC class I RT1-A molecules. Curr Biol. 8(3):169–180. PubMed

Kabsch W, Sander C. 1983. Dictionary of protein secondary structure: pattern recognition of hydrogen‐bonded and geometrical features. Biopolymers  22(12):2577–2637. PubMed

Kandil E, et al.  1996. Isolation of low molecular mass polypeptide complementary DNA clones from primitive vertebrates. Implications for the origin of MHC class I-restricted antigen presentation. J Immunol. 156(11):4245–4253. PubMed

Kasahara M, Flajnik MF. 2019. Origin and evolution of the specialized forms of proteasomes involved in antigen presentation. Immunogenetics  71(3):251–261. PubMed PMC

Kaufman J. 1999. Co-evolving genes in MHC haplotypes: the “rule” for nonmammalian vertebrates?  Immunogenetics  50(3–4):228–236. PubMed

Kaufman J. 2015. Co‐evolution with chicken class I genes. Immunol Rev. 267(1):56–71. PubMed

Kaufman J. 2018. Unfinished business: evolution of the MHC and the adaptive immune system of jawed vertebrates. Annu Rev Immunol. 36(1):383–409. PubMed

Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SD. 2006. GARD: a genetic algorithm for recombination detection. Bioinformatics  22(24):3096–3098. PubMed

Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 33(7):1870–1874. PubMed PMC

Laurentino TG, et al.  2020. Genomic release-recapture experiment in the wild reveals within-generation polygenic selection in stickleback fish. Nat Commun. 11:1–9. PubMed PMC

Lehnert E, Tampé R. 2017. Structure and dynamics of antigenic peptides in complex with TAP. Front Immunol. 8:10. PubMed PMC

Madison-Villar M, Sun C, Lau NC, Settles ML, Mueller RL. 2016. Small RNAs from a big genome: the piRNA pathway and transposable elements in the salamander species Desmognathus fuscus. J Mol Evol. 83(3–4):126–136. PubMed

Maghrabi AH, McGuffin LJ. 2017. ModFOLD6: an accuate web server for the global and local quality estimation of 3D protein models. Nucleic Acid Res. 45(W1):W416–W421. PubMed PMC

McConnell SC, et al.  2016. Alternative haplotypes of antigen processing genes in zebrafish diverged early in vertebrate evolution. Proc Natl Acad Sci USA. 113(34):E5014–E5023. PubMed PMC

McElroy KE, et al.  2017. Genome expression balance in a triploid trihybrid vertebrate. Genome Biol Evol. 9(4):968–980. PubMed PMC

Miura F, et al.  2010. Transspecies dimorphic allelic lineages of the proteasome subunit β-type 8 gene (PSMB8) in the teleost genus Oryzias. Proc Natl Acad Sci USA. 107(50):21599–21604. PubMed PMC

Müller V, De Boer RJ, Bonhoeffer S, Szathmáry E. 2018. An evolutionary perspective on the systems of adaptive immunity. Biol Rev. 93(1):505–528. PubMed

Murata S, Takahama Y, Kasahara M, Tanaka K. 2018. The immunoproteasome and thymoproteasome: functions, evolution and human disease. Nat Immunol. 19(9):923–931. PubMed

Murphy K, Weaver C. 2016. Janeway’s immunobiology. New York: Garland Science.

Murrell B, et al.  2013. FUBAR: a fast, unconstrained bayesian approximation for inferring selection. Mol Biol Evol. 30(5):1196–1205. PubMed PMC

Murrell B, et al.  2012. Detecting individual sites subject to episodic diversifying selection. PLoS Genet. 8(7):e1002764. PubMed PMC

Namikawa C, et al.  1995. Isolation of Xenopus  LMP-7 homologues. Striking allelic diversity and linkage to MHC. J Immunol. 155(4):1964–1971. PubMed

Niedzicka M, Fijarczyk A, Dudek K, Stuglik M, Babik W. 2016. Molecular inversion probes for targeted resequencing in non-model organisms. Sci Rep. 6:24051. PubMed PMC

Nonaka M, Yamada-Namikawa C, Flajnik MF, Du Pasquier L. 2000. Trans-species polymorphism of the major histocompatibility complex-encoded proteasome subunit LMP7 in an amphibian genus, Xenopus. Immunogenetics  51(3):186–192. PubMed

Nourisson C, Muñoz‐Merida A, Carneiro M, Sequeira F. 2017. De novo transcriptome assembly and polymorphism detection in two highly divergent evolutionary units of Bosca’s newt (Lissotriton boscai) endemic to the Iberian Peninsula. Mol Ecol Resour. 17(3):546–549. PubMed

Ohta Y, Flajnik MF. 2015. Coevolution of MHC genes (LMP/TAP/class Ia, NKT‐class Ib, NKp30‐B7H6): lessons from cold‐blooded vertebrates. Immunol Rev. 267(1):6–15. PubMed PMC

Ohta Y, Goetz W, Hossain MZ, Nonaka M, Flajnik MF. 2006. Ancestral organization of the MHC revealed in the amphibian Xenopus. J Immunol. 176(6):3674–3685. PubMed

Ohta Y, et al.  2003. Two highly divergent ancient allelic lineages of the transporter associated with antigen processing (TAP) gene in Xenopus: further evidence for co‐evolution among MHC class I region genes. Eur J Immunol. 33(11):3017–3027. PubMed

Oldham ML, et al.  2016. A mechanism of viral immune evasion revealed by cryo-EM analysis of the TAP transporter. Nature  529(7587):537–540. PubMed PMC

Paulsson KM. 2004. Evolutionary and functional perspectives of the major histocompatibility complex class I antigen-processing machinery. CMLS: Cell Mol Life Sci. 61(19–20):2446–2460. PubMed PMC

Petryszak R, et al.  2016. Expression Atlas update—an integrated database of gene and protein expression in humans, animals and plants. Nucleic Acids Res. 44(D1):D746–D752. PubMed PMC

Radwan J, Babik W, Kaufman J, Lenz TL, Winternitz J. 2020. Advances in the evolutionary understanding of MHC polymorphism. Trends Genet. 36(4):298–311. PubMed

Rancilhac L, et al. Forthcoming 2021. Phylotranscriptomic evidence for pervasive ancient hybridization among Old World salamanders. Mol Phylogenet Evol. 155:106967. PubMed

Rodríguez A, et al.  2017. Inferring the shallow phylogeny of true salamanders (Salamandra) by multiple phylogenomic approaches. Mol Phylogenet Evol. 115:16–26. PubMed

Rousset F. 2008. GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Res. 8(1):103–106. PubMed

Salter-Cid L, Nonaka M, Flajnik MF. 1998. Expression of MHC class Ia and class Ib during ontogeny: high expression in epithelia and coregulation of class Ia and lmp7 genes. J Immunol. 160(6):2853–2861. PubMed

Sammut B, et al.  1999. Axolotl MHC architecture and polymorphism. Eur J Immunol. 29(9):2897–2907. PubMed

Schrödinger LLC. 2019. The PyMOL Molecular Graphics System, V2. 0.0. New York (NY): Schrödinger, LLC.

Smith JJ, et al.  2019. A chromosome-scale assembly of the axolotl genome. Genome Res. 29(2):317–324. PubMed PMC

Sousounis K, et al.  2015. A robust transcriptional program in newts undergoing multiple events of lens regeneration throughout their lifespan. Elife  4:e09594. PubMed PMC

Stuglik MT, Babik W. 2016. Genomic heterogeneity of historical gene flow between two species of newts inferred from transcriptome data. Ecol Evol. 6(13):4513–4525. PubMed PMC

Tien MZ, Meyer AG, Sydykova DK, Spielman SJ, Wilke CO. 2013. Maximum allowed solvent accessibilites of residues in proteins. PLoS One  8(11):e80635. PubMed PMC

Tournefier A, et al.  1998. Structure of MHC class I and class II cDNAs and possible immunodeficiency linked to class II expression in the Mexican axolotl. Immunol Rev. 166(1):259–277. PubMed

Tsukamoto K, Miura F, Fujito NT, Yoshizaki G, Nonaka M. 2012. Long-lived dichotomous lineages of the proteasome subunit beta type 8 (PSMB8) gene surviving more than 500 million years as alleles or paralogs. Mol Biol Evol. 29(10):3071–3079. PubMed

van Hateren A, et al.  2013. A mechanistic basis for the co-evolution of chicken tapasin and major histocompatibility complex class I (MHC I) proteins. J Biol Chem. 288(45):32797–32808. PubMed PMC

Walker BA, et al.  2011. The dominantly expressed class I molecule of the chicken MHC is explained by coevolution with the polymorphic peptide transporter (TAP) genes. Proc Natl Acad Sci USA. 108(20):8396–8401. PubMed PMC

Walter L. 2020. Nomenclature report on the major histocompatibility complex genes and alleles of the laboratory rat (Rattus norvegicus). Immunogenetics  72(1–2):5–8. PubMed

Weaver S, et al.  2018. Datamonkey 2.0: a modern web application for characterizing selective and other evolutionary processes. Mol Biol Evol. 35(3):773–777. PubMed PMC

Webb B, Sali A. 2016. Comparative protein structure modeling using MODELLER. Curr Protoc Bioinformatics. 54(1):5.6.1–5.6.37. PubMed PMC

Wielstra B, Burke T, Butlin R, Arntzen J. 2017. A signature of dynamic biogeography: enclaves indicate past species replacement. Proc R Soc B. 284(1868):20172014. PubMed PMC

Wielstra B, et al.  2017. A genomic footprint of hybrid zone movement in crested newts. Evol Lett. 1(2):93–101. PubMed PMC

Wielstra B, McCartney-Melstad E, Arntzen J, Butlin RK, Shaffer HB. 2019. Phylogenomics of the adaptive radiation of Triturus newts supports gradual ecological niche expansion towards an incrementally aquatic lifestyle. Mol Phylogenet Evol. 133:120–127. PubMed

Yamaguchi T, Dijkstra JM. 2019. Major histocompatibility complex (MHC) genes and disease resistance in fish. Cells  8:378. PubMed PMC

Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 24(8):1586–1591. PubMed

Yang Z. 2019. Adaptive molecular evolution. In: Balding DJ, Moltke I, Marioni J, editors. Handbook of statistical genomics. Oxford: Wiley. p. 369–396.

Zhang JZ, Nielsen R, Yang ZH. 2005. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol. 22(12):2472–2479. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...