Hypoxia-Induced Sarcoplasmic Reticulum Ca2+ Leak Is Reversed by Ryanodine Receptor Stabilizer JTV-519 in HL-1 Cardiomyocytes
Jazyk angličtina Země Turecko Médium print
Typ dokumentu časopisecké články
PubMed
35703484
PubMed Central
PMC9361329
DOI
10.5152/anatoljcardiol.2022.1223
Knihovny.cz E-zdroje
- MeSH
- hypoxie MeSH
- kardiomyocyty MeSH
- lidé MeSH
- ryanodinový receptor vápníkového kanálu * genetika metabolismus farmakologie MeSH
- sarkoplazmatické retikulum * metabolismus MeSH
- thiazepiny MeSH
- vápník metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- K201 compound MeSH Prohlížeč
- ryanodinový receptor vápníkového kanálu * MeSH
- thiazepiny MeSH
- vápník MeSH
BACKGROUND: To assess whether hypoxia, as can be found in obstructive sleep apnea syndrome, is causally associated with the development of heart failure through a direct effect on calcium leakage from the sarcoplasmic reticulum. METHODS: The impact of hypoxia on sarcoplasmic reticulum calcium leakage and expres- sion of RyR2 (ryanodine receptor2) and SERC2a (sarcoplasmic reticulum Ca2+ATPase 2a) was investigated together with the outcomes of JTV-519 and S107 treatment. HL-1 car- diomyocytes were cultured for 7 days on gas-permeable cultureware under control (12% O2) or hypoxic (1% O2) conditions with or without JTV-519 or S107. SRCL was assessed using a Fluo-5N probe. Gene and protein expression was analyzed using qPCR and western blotting. RESULTS: Hypoxic exposure increased sarcoplasmic reticulum calcium leakage by 39% and reduced RyR2 gene expression by 52%. No effect on RyR2 protein expression was observed. Treatment with 1μM JTV-519 reduced sarcoplasmic reticulum calcium leakage by 52% and 35% under control and hypoxic conditions, respectively. Administration of 1 μM JTV-519 increased RyR2 gene expression by 89% in control conditions. No effect on SRCL, RyR2, or SERC2a gene, or protein expression was observed with S107 treatment. CONCLUSION: Hypoxia increased sarcoplasmic reticulum calcium leakage which was ame- liorated by JTV-519 treatment independently of gene or protein expression. JTV-519 rep- resents a possible treatment for obstructive sleep apnea-associated HF.
Department of Cardiology University Hospital Královské Vinohrady Prague Czech Republic
Department of Pathophysiology 3rd Faculty of Medicine Charles University Prague Czech Republic
Zobrazit více v PubMed
Benjafield AV, Ayas NT, Eastwood PR.et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Lancet Respir Med. 2019;7(8):687 698. 10.1016/S2213-2600(19)30198-5) PubMed DOI PMC
Tietjens JR, Claman D, Kezirian EJ.et al. Obstructive sleep apnea in cardiovascular disease: a review of the literature and proposed multidisciplinary clinical management strategy. J Am Heart Assoc. 2019;8(1):e010440. 10.1161/JAHA.118.010440) PubMed DOI PMC
Shahar E, Whitney CW, Redline S.et al. Sleep-disordered breathing and cardiovascular disease: cross-sectional results of the Sleep Heart Health Study. Am J Respir Crit Care Med. 2001;163(1):19 25. 10.1164/ajrccm.163.1.2001008) PubMed DOI
Dridi H, Kushnir A, Zalk R, Yuan Q, Melville Z, Marks AR. Intracellular calcium leak in heart failure and atrial fibrillation: a unifying mechanism and therapeutic target. Nat Rev Cardiol. 2020;17(11):732 747. 10.1038/s41569-020-0394-8) PubMed DOI PMC
Kasai T, Bradley TD. Obstructive sleep apnea and heart failure: pathophysiologic and therapeutic implications. J Am Coll Cardiol. 2011;57(2):119 127. 10.1016/j.jacc.2010.08.627) PubMed DOI
Lohse MJ, Engelhardt S, Eschenhagen T. What is the role of β-adrenergic signaling in heart failure? Circ Res. 2003;93(10):896 906. 10.1161/01.RES.0000102042.83024.CA) PubMed DOI
Zucker IH, Xiao L, Haack KKV. The central RAS and sympathetic nerve activity in chronic heart failure. Clin Sci (Lond). 2014;126(10):695-706. 10.1042/CS20130294) PubMed DOI PMC
Lou Q, Janardhan A, Efimov IR. Remodeling of calcium handling in human heart failure. Adv Exp Med Biol. 2012;740:1145 1174. 10.1007/978-94-007-2888-2_52) PubMed DOI PMC
Bers DM. Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol. 2008;70:23 49. 10.1146/annurev.physiol.70.113006.100455) PubMed DOI
Andersson DC, Marks AR. Fixing ryanodine receptor Ca2+ leak - A novel therapeutic strategy for contractile failure in heart and skeletal muscle. Drug Discov Today Dis Mech. 2010;7(2):e151-e157. 10.1016/j.ddmec.2010.09.009) PubMed DOI PMC
Talukder MAH, Zweier JL, Periasamy M. Targeting calcium transport in ischaemic heart disease. Cardiovasc Res. 2009;84(3):345 352. 10.1093/cvr/cvp264) PubMed DOI PMC
Polak J, Studer-Rabeler K, McHugh H, Hussain MA, Shimoda LA. System for exposing cultured cells to intermittent hypoxia utilizing gas permeable cultureware. Gen Physiol Biophys. 2015;34(3):235 247. 10.4149/gpb_2014043) PubMed DOI PMC
Claycomb WC, Lanson NA, Stallworth BS.et al. HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci U S A. 1998;95(6):2979 2984. 10.1073/pnas.95.6.2979) PubMed DOI PMC
Reinke C, Bevans-Fonti S, Drager LF, Shin MK, Polotsky VY. Effects of different acute hypoxic regimens on tissue oxygen profiles and metabolic outcomes. J Appl Physiol (1985). 2011;111(3):881 890. 10.1152/japplphysiol.00492.2011) PubMed DOI PMC
Yano M, Kobayashi S, Kohno M.et al. FKBP12.6-mediated stabilization of calcium-release channel (ryanodine receptor) as a novel therapeutic strategy Against heart failure. Circulation. 2003;107(3):477 484. 10.1161/01.cir.0000044917.74408.be) PubMed DOI
Kaneko N, Matsuda R, Hata Y, Shimamoto K. Pharmacological characteristics and clinical applications of K201. Curr Clin Pharmacol. 2009;4(2):126-131. 10.2174/157488409788184972) PubMed DOI PMC
Bellinger AM, Reiken S, Dura M.et al. Remodeling of ryanodine receptor complex causes “leaky” channels: A molecular mechanism for decreased exercise capacity. Proc Natl Acad Sci U S A. 2008;105(6):2198-2202. 10.1073/pnas.0711074105) PubMed DOI PMC
Toischer K, Lehnart SE, Tenderich G.et al. K201 improves aspects of the contractile performance of human failing myocardium via reduction in Ca2+ leak from the sarcoplasmic reticulum. Basic Res Cardiol. 2010;105(2):279 287. 10.1007/s00395-009-0057-8) PubMed DOI PMC
Kohno M, Yano M, Kobayashi S.et al. A new cardioprotective agent, JTV519, improves defective channel gating of ryanodine receptor in heart failure. Am J Physiol Heart Circ Physiol. 2003;284(3):H1035 H1042. 10.1152/ajpheart.00722.2002) PubMed DOI
Shannon TR, Pogwizd SM, Bers DM. Elevated sarcoplasmic reticulum Ca2+ leak in intact ventricular myocytes From rabbits in heart failure. Circ Res. 2003;93(7):592 594. 10.1161/01.RES.0000093399.11734.B3) PubMed DOI
Donoso P, Sanchez G, Bull R, Hidalgo C. Modulation of cardiac ryanodine receptor activity by ROS and RNS. Front Biosci (Landmark Ed). 2011;16(2):553 567. 10.2741/3705) PubMed DOI
Gonzalez DR, Treuer AV, Castellanos J, Dulce RA, Hare JM. Impaired S-nitrosylation of the ryanodine receptor caused by xanthine oxidase activity contributes to calcium leak in heart failure. J Biol Chem. 2010;285(37):28938 28945. 10.1074/jbc.M110.154948) PubMed DOI PMC
Eager KR, Roden LD, Dulhunty AF. Actions of sulfhydryl reagents on single ryanodine receptor Ca(2+)-release channels from sheep myocardium. Am J Physiol. 1997;272(6 Pt 1):C1908 C1918. 10.1152/ajpcell.1997.272.6.C1908) PubMed DOI
Niggli E, Ullrich ND, Gutierrez D, Kyrychenko S, Poláková E, Shirokova N. Posttranslational modifications of cardiac ryanodine receptors: Ca(2+) signaling and EC-coupling. Biochim Biophys Acta. 2013;1833(4):866 875. 10.1016/j.bbamcr.2012.08.016) PubMed DOI PMC
Yuan Q, Deng K-Y, Sun L.et al. Calstabin 2: An important regulator for learning and memory in mice. Sci Rep. 2016;6:21087. PubMed PMC
Zhao L, Hui P, Xie Y.et al. Effect of CPAP therapy on dynamic glucose level in OSAHS patients with newly diagnosed T2DM. Zhonghua Yi Xue Za Zhi. 2015;95(44):3579 3583. PubMed
Andersson DC, Betzenhauser MJ, Reiken S.et al. Ryanodine receptor oxidation causes intracellular calcium leak and muscle weakness in aging. Cell Metab. 2011;14(2):196-207. 10.1016/j.cmet.2011.05.014) PubMed DOI PMC
Dobrev D, Wehrens XHT. Role of RyR2 phosphorylation in heart failure and arrhythmias: controversies around ryanodine receptor phosphorylation in cardiac disease. Circ Res. 2014;114(8):1311 9; discussion 1319. 10.1161/CIRCRESAHA.114.300568) PubMed DOI PMC
Sanada S, Asanuma H, Tsukamoto O.et al. Protein kinase A as another mediator of ischemic preconditioning independent of protein kinase C. Circulation. 2004;110(1):51 57. 10.1161/01.CIR.0000133390.12306.C7) PubMed DOI
Gui L, Guo X, Zhang Z.et al. Activation of CaMKIIδA promotes Ca 2+ leak from the sarcoplasmic reticulum in cardiomyocytes of chronic heart failure rats. Acta Pharmacol Sin. 2018;39(10):1604 1612. 10.1038/aps.2018.20) PubMed DOI PMC
Meissner G. The structural basis of ryanodine receptor ion channel function. J Gen Physiol. 2017;149(12):1065-1089. 10.1085/jgp.201711878) PubMed DOI PMC
Haji-Ghassemi O, Yuchi Z, Van Petegem F. The cardiac ryanodine receptor phosphorylation hotspot embraces PKA in a phosphorylation-dependent manner. Mol Cell. 2019;75(1):39 52.e4. 10.1016/j.molcel.2019.04.019) PubMed DOI
McEvoy RD, Antic NA, Heeley E.et al. CPAP for prevention of cardiovascular events in obstructive sleep apnea. N Engl J Med. 2016;375(10):919 931. 10.1056/NEJMoa1606599) PubMed DOI
Cowie MR, Woehrle H, Wegscheider K.et al. Adaptive servo-ventilation for central sleep apnea in systolic heart failure. N Engl J Med. 2015;373(12):1095 1105. 10.1056/NEJMoa1506459) PubMed DOI PMC
Westlake K, Dostalova V, Plihalova A, Pretl M, Polak J. The clinical impact of systematic screening for obstructive sleep apnea in a type 2 diabetes population—adherence to the screening-diagnostic process and the acceptance and adherence to the CPAP therapy compared to regular sleep clinic patients. Front Endocrinol (Lausanne). 2018;9:714. 10.3389/fendo.2018.00714) PubMed DOI PMC
Arai M, Alpert NR, MacLennan DH, Barton P, Periasamy M. Alterations in sarcoplasmic reticulum gene expression in human heart failure. A possible mechanism for alterations in systolic and diastolic properties of the failing myocardium. Circ Res. 1993;72(2):463 469. 10.1161/01.res.72.2.463) PubMed DOI
Campanha FVG, Perone D, Campos DHS.et al. Thyroxine increases Serca2 and Ryr2 gene expression in heart failure rats with euthyroid sick syndrome. Arch Endocrinol Metab. 2016;60(6):582 586. 10.1590/2359-3997000000208) PubMed DOI PMC
Nishida K, Otsu K, Hori M, Kuzuya T, Tada M. Cloning and characterization of the 5′-upstream regulatory region of the Ca2+-release channel gene of cardiac sarcoplasmic reticulum. Eur J Biochem. 1996;240(2):408 415. 10.1111/j.1432-1033.1996.0408h.x) PubMed DOI
Vizotto VA, Carvalho RF, Sugizaki MM.et al. Down-regulation of the cardiac sarcoplasmic reticulum ryanodine channel in severely food-restricted rats. Braz J Med Biol Res. 2007;40(1):27 31. 10.1590/s0100-879x2007000100004) PubMed DOI
Gamble KL, Ciarleglio CM. Ryanodine receptors are regulated by the circadian clock and implicated in gating photic entrainment. J Neurosci. 2009;29(38):11717-11719. 10.1523/JNEUROSCI.3820-09.2009) PubMed DOI PMC
Inagaki K, Kihara Y, Hayashida W.et al. Anti-ischemic effect of a novel cardioprotective agent, JTV519, is mediated Through specific activation of δ-isoform of protein kinase C in rat ventricular myocardium. Circulation. 2000;101(7):797 804. 10.1161/01.cir.101.7.797) PubMed DOI
Caino MC, von Burstin VA, Lopez-Haber C, Kazanietz MG. Differential regulation of gene expression by protein kinase C isozymes as determined by genome-wide expression analysis. J Biol Chem. 2011;286(13):11254 11264. 10.1074/jbc.M110.194332) PubMed DOI PMC
Koussounadis A, Langdon SP, Um IH, Harrison DJ, Smith VA. Relationship between differentially expressed mRNA and mRNA-protein correlations in a xenograft model system. Sci Rep. 2015;5:10775. PubMed PMC
Singh A. Negative feedback through mRNA provides the best control of gene-expression noise. IEEE Trans Nanobiosci. 2011;10(3):194 200. 10.1109/TNB.2011.2168826) PubMed DOI
Stapleton JA, Endo K, Fujita Y.et al. Feedback control of ProteinExpression in MammalianCells by tunable synthetic translational inhibition. ACS Synth Biol. 2012;1(3):83-88. 10.1021/sb200005w) PubMed DOI PMC
Thomas JD, Johannes GJ. Identification of mRNAs that continue to associate with polysomes during hypoxia. RNA. 2007;13(7):1116-1131. 10.1261/rna.534807) PubMed DOI PMC
Vervliet T. Ryanodine receptors in autophagy: implications for neurodegenerative diseases? Front Cell Neurosci. 2018;12:89. 10.3389/fncel.2018.00089) PubMed DOI PMC
Oltmanns KM, Gehring H, Rudolf S.et al. Hypoxia causes glucose intolerance in humans. Am J Respir Crit Care Med. 2004;169(11):1231 1237. 10.1164/rccm.200308-1200OC) PubMed DOI
Michiels C. Physiological and pathological responses to hypoxia. Am J Pathol. 2004;164(6):1875-1882. 10.1016/S0002-9440(10)63747-9) PubMed DOI PMC
Pavlikova N, Weiszenstein M, Pala J.et al. The effect of cultureware surfaces on functional and structural components of differentiated 3T3-L1 preadipocytes. Cell Mol Biol Lett. 2015;20(5):919 936. 10.1515/cmble-2015-0054) PubMed DOI
Hubbi ME, Semenza GL. Regulation of cell proliferation by hypoxia-inducible factors. Am J Physiol Cell Physiol. 2015;309(12):C775-C782. 10.1152/ajpcell.00279.2015) PubMed DOI PMC