Hypoxia-Induced Sarcoplasmic Reticulum Ca2+ Leak Is Reversed by Ryanodine Receptor Stabilizer JTV-519 in HL-1 Cardiomyocytes
Language English Country Turkey Media print
Document type Journal Article
PubMed
35703484
PubMed Central
PMC9361329
DOI
10.5152/anatoljcardiol.2022.1223
Knihovny.cz E-resources
- MeSH
- Hypoxia MeSH
- Myocytes, Cardiac MeSH
- Humans MeSH
- Ryanodine Receptor Calcium Release Channel * genetics metabolism pharmacology MeSH
- Sarcoplasmic Reticulum * metabolism MeSH
- Thiazepines MeSH
- Calcium metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- K201 compound MeSH Browser
- Ryanodine Receptor Calcium Release Channel * MeSH
- Thiazepines MeSH
- Calcium MeSH
BACKGROUND: To assess whether hypoxia, as can be found in obstructive sleep apnea syndrome, is causally associated with the development of heart failure through a direct effect on calcium leakage from the sarcoplasmic reticulum. METHODS: The impact of hypoxia on sarcoplasmic reticulum calcium leakage and expres- sion of RyR2 (ryanodine receptor2) and SERC2a (sarcoplasmic reticulum Ca2+ATPase 2a) was investigated together with the outcomes of JTV-519 and S107 treatment. HL-1 car- diomyocytes were cultured for 7 days on gas-permeable cultureware under control (12% O2) or hypoxic (1% O2) conditions with or without JTV-519 or S107. SRCL was assessed using a Fluo-5N probe. Gene and protein expression was analyzed using qPCR and western blotting. RESULTS: Hypoxic exposure increased sarcoplasmic reticulum calcium leakage by 39% and reduced RyR2 gene expression by 52%. No effect on RyR2 protein expression was observed. Treatment with 1μM JTV-519 reduced sarcoplasmic reticulum calcium leakage by 52% and 35% under control and hypoxic conditions, respectively. Administration of 1 μM JTV-519 increased RyR2 gene expression by 89% in control conditions. No effect on SRCL, RyR2, or SERC2a gene, or protein expression was observed with S107 treatment. CONCLUSION: Hypoxia increased sarcoplasmic reticulum calcium leakage which was ame- liorated by JTV-519 treatment independently of gene or protein expression. JTV-519 rep- resents a possible treatment for obstructive sleep apnea-associated HF.
Department of Cardiology University Hospital Královské Vinohrady Prague Czech Republic
Department of Pathophysiology 3rd Faculty of Medicine Charles University Prague Czech Republic
See more in PubMed
Benjafield AV, Ayas NT, Eastwood PR.et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Lancet Respir Med. 2019;7(8):687 698. 10.1016/S2213-2600(19)30198-5) PubMed DOI PMC
Tietjens JR, Claman D, Kezirian EJ.et al. Obstructive sleep apnea in cardiovascular disease: a review of the literature and proposed multidisciplinary clinical management strategy. J Am Heart Assoc. 2019;8(1):e010440. 10.1161/JAHA.118.010440) PubMed DOI PMC
Shahar E, Whitney CW, Redline S.et al. Sleep-disordered breathing and cardiovascular disease: cross-sectional results of the Sleep Heart Health Study. Am J Respir Crit Care Med. 2001;163(1):19 25. 10.1164/ajrccm.163.1.2001008) PubMed DOI
Dridi H, Kushnir A, Zalk R, Yuan Q, Melville Z, Marks AR. Intracellular calcium leak in heart failure and atrial fibrillation: a unifying mechanism and therapeutic target. Nat Rev Cardiol. 2020;17(11):732 747. 10.1038/s41569-020-0394-8) PubMed DOI PMC
Kasai T, Bradley TD. Obstructive sleep apnea and heart failure: pathophysiologic and therapeutic implications. J Am Coll Cardiol. 2011;57(2):119 127. 10.1016/j.jacc.2010.08.627) PubMed DOI
Lohse MJ, Engelhardt S, Eschenhagen T. What is the role of β-adrenergic signaling in heart failure? Circ Res. 2003;93(10):896 906. 10.1161/01.RES.0000102042.83024.CA) PubMed DOI
Zucker IH, Xiao L, Haack KKV. The central RAS and sympathetic nerve activity in chronic heart failure. Clin Sci (Lond). 2014;126(10):695-706. 10.1042/CS20130294) PubMed DOI PMC
Lou Q, Janardhan A, Efimov IR. Remodeling of calcium handling in human heart failure. Adv Exp Med Biol. 2012;740:1145 1174. 10.1007/978-94-007-2888-2_52) PubMed DOI PMC
Bers DM. Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol. 2008;70:23 49. 10.1146/annurev.physiol.70.113006.100455) PubMed DOI
Andersson DC, Marks AR. Fixing ryanodine receptor Ca2+ leak - A novel therapeutic strategy for contractile failure in heart and skeletal muscle. Drug Discov Today Dis Mech. 2010;7(2):e151-e157. 10.1016/j.ddmec.2010.09.009) PubMed DOI PMC
Talukder MAH, Zweier JL, Periasamy M. Targeting calcium transport in ischaemic heart disease. Cardiovasc Res. 2009;84(3):345 352. 10.1093/cvr/cvp264) PubMed DOI PMC
Polak J, Studer-Rabeler K, McHugh H, Hussain MA, Shimoda LA. System for exposing cultured cells to intermittent hypoxia utilizing gas permeable cultureware. Gen Physiol Biophys. 2015;34(3):235 247. 10.4149/gpb_2014043) PubMed DOI PMC
Claycomb WC, Lanson NA, Stallworth BS.et al. HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci U S A. 1998;95(6):2979 2984. 10.1073/pnas.95.6.2979) PubMed DOI PMC
Reinke C, Bevans-Fonti S, Drager LF, Shin MK, Polotsky VY. Effects of different acute hypoxic regimens on tissue oxygen profiles and metabolic outcomes. J Appl Physiol (1985). 2011;111(3):881 890. 10.1152/japplphysiol.00492.2011) PubMed DOI PMC
Yano M, Kobayashi S, Kohno M.et al. FKBP12.6-mediated stabilization of calcium-release channel (ryanodine receptor) as a novel therapeutic strategy Against heart failure. Circulation. 2003;107(3):477 484. 10.1161/01.cir.0000044917.74408.be) PubMed DOI
Kaneko N, Matsuda R, Hata Y, Shimamoto K. Pharmacological characteristics and clinical applications of K201. Curr Clin Pharmacol. 2009;4(2):126-131. 10.2174/157488409788184972) PubMed DOI PMC
Bellinger AM, Reiken S, Dura M.et al. Remodeling of ryanodine receptor complex causes “leaky” channels: A molecular mechanism for decreased exercise capacity. Proc Natl Acad Sci U S A. 2008;105(6):2198-2202. 10.1073/pnas.0711074105) PubMed DOI PMC
Toischer K, Lehnart SE, Tenderich G.et al. K201 improves aspects of the contractile performance of human failing myocardium via reduction in Ca2+ leak from the sarcoplasmic reticulum. Basic Res Cardiol. 2010;105(2):279 287. 10.1007/s00395-009-0057-8) PubMed DOI PMC
Kohno M, Yano M, Kobayashi S.et al. A new cardioprotective agent, JTV519, improves defective channel gating of ryanodine receptor in heart failure. Am J Physiol Heart Circ Physiol. 2003;284(3):H1035 H1042. 10.1152/ajpheart.00722.2002) PubMed DOI
Shannon TR, Pogwizd SM, Bers DM. Elevated sarcoplasmic reticulum Ca2+ leak in intact ventricular myocytes From rabbits in heart failure. Circ Res. 2003;93(7):592 594. 10.1161/01.RES.0000093399.11734.B3) PubMed DOI
Donoso P, Sanchez G, Bull R, Hidalgo C. Modulation of cardiac ryanodine receptor activity by ROS and RNS. Front Biosci (Landmark Ed). 2011;16(2):553 567. 10.2741/3705) PubMed DOI
Gonzalez DR, Treuer AV, Castellanos J, Dulce RA, Hare JM. Impaired S-nitrosylation of the ryanodine receptor caused by xanthine oxidase activity contributes to calcium leak in heart failure. J Biol Chem. 2010;285(37):28938 28945. 10.1074/jbc.M110.154948) PubMed DOI PMC
Eager KR, Roden LD, Dulhunty AF. Actions of sulfhydryl reagents on single ryanodine receptor Ca(2+)-release channels from sheep myocardium. Am J Physiol. 1997;272(6 Pt 1):C1908 C1918. 10.1152/ajpcell.1997.272.6.C1908) PubMed DOI
Niggli E, Ullrich ND, Gutierrez D, Kyrychenko S, Poláková E, Shirokova N. Posttranslational modifications of cardiac ryanodine receptors: Ca(2+) signaling and EC-coupling. Biochim Biophys Acta. 2013;1833(4):866 875. 10.1016/j.bbamcr.2012.08.016) PubMed DOI PMC
Yuan Q, Deng K-Y, Sun L.et al. Calstabin 2: An important regulator for learning and memory in mice. Sci Rep. 2016;6:21087. PubMed PMC
Zhao L, Hui P, Xie Y.et al. Effect of CPAP therapy on dynamic glucose level in OSAHS patients with newly diagnosed T2DM. Zhonghua Yi Xue Za Zhi. 2015;95(44):3579 3583. PubMed
Andersson DC, Betzenhauser MJ, Reiken S.et al. Ryanodine receptor oxidation causes intracellular calcium leak and muscle weakness in aging. Cell Metab. 2011;14(2):196-207. 10.1016/j.cmet.2011.05.014) PubMed DOI PMC
Dobrev D, Wehrens XHT. Role of RyR2 phosphorylation in heart failure and arrhythmias: controversies around ryanodine receptor phosphorylation in cardiac disease. Circ Res. 2014;114(8):1311 9; discussion 1319. 10.1161/CIRCRESAHA.114.300568) PubMed DOI PMC
Sanada S, Asanuma H, Tsukamoto O.et al. Protein kinase A as another mediator of ischemic preconditioning independent of protein kinase C. Circulation. 2004;110(1):51 57. 10.1161/01.CIR.0000133390.12306.C7) PubMed DOI
Gui L, Guo X, Zhang Z.et al. Activation of CaMKIIδA promotes Ca 2+ leak from the sarcoplasmic reticulum in cardiomyocytes of chronic heart failure rats. Acta Pharmacol Sin. 2018;39(10):1604 1612. 10.1038/aps.2018.20) PubMed DOI PMC
Meissner G. The structural basis of ryanodine receptor ion channel function. J Gen Physiol. 2017;149(12):1065-1089. 10.1085/jgp.201711878) PubMed DOI PMC
Haji-Ghassemi O, Yuchi Z, Van Petegem F. The cardiac ryanodine receptor phosphorylation hotspot embraces PKA in a phosphorylation-dependent manner. Mol Cell. 2019;75(1):39 52.e4. 10.1016/j.molcel.2019.04.019) PubMed DOI
McEvoy RD, Antic NA, Heeley E.et al. CPAP for prevention of cardiovascular events in obstructive sleep apnea. N Engl J Med. 2016;375(10):919 931. 10.1056/NEJMoa1606599) PubMed DOI
Cowie MR, Woehrle H, Wegscheider K.et al. Adaptive servo-ventilation for central sleep apnea in systolic heart failure. N Engl J Med. 2015;373(12):1095 1105. 10.1056/NEJMoa1506459) PubMed DOI PMC
Westlake K, Dostalova V, Plihalova A, Pretl M, Polak J. The clinical impact of systematic screening for obstructive sleep apnea in a type 2 diabetes population—adherence to the screening-diagnostic process and the acceptance and adherence to the CPAP therapy compared to regular sleep clinic patients. Front Endocrinol (Lausanne). 2018;9:714. 10.3389/fendo.2018.00714) PubMed DOI PMC
Arai M, Alpert NR, MacLennan DH, Barton P, Periasamy M. Alterations in sarcoplasmic reticulum gene expression in human heart failure. A possible mechanism for alterations in systolic and diastolic properties of the failing myocardium. Circ Res. 1993;72(2):463 469. 10.1161/01.res.72.2.463) PubMed DOI
Campanha FVG, Perone D, Campos DHS.et al. Thyroxine increases Serca2 and Ryr2 gene expression in heart failure rats with euthyroid sick syndrome. Arch Endocrinol Metab. 2016;60(6):582 586. 10.1590/2359-3997000000208) PubMed DOI PMC
Nishida K, Otsu K, Hori M, Kuzuya T, Tada M. Cloning and characterization of the 5′-upstream regulatory region of the Ca2+-release channel gene of cardiac sarcoplasmic reticulum. Eur J Biochem. 1996;240(2):408 415. 10.1111/j.1432-1033.1996.0408h.x) PubMed DOI
Vizotto VA, Carvalho RF, Sugizaki MM.et al. Down-regulation of the cardiac sarcoplasmic reticulum ryanodine channel in severely food-restricted rats. Braz J Med Biol Res. 2007;40(1):27 31. 10.1590/s0100-879x2007000100004) PubMed DOI
Gamble KL, Ciarleglio CM. Ryanodine receptors are regulated by the circadian clock and implicated in gating photic entrainment. J Neurosci. 2009;29(38):11717-11719. 10.1523/JNEUROSCI.3820-09.2009) PubMed DOI PMC
Inagaki K, Kihara Y, Hayashida W.et al. Anti-ischemic effect of a novel cardioprotective agent, JTV519, is mediated Through specific activation of δ-isoform of protein kinase C in rat ventricular myocardium. Circulation. 2000;101(7):797 804. 10.1161/01.cir.101.7.797) PubMed DOI
Caino MC, von Burstin VA, Lopez-Haber C, Kazanietz MG. Differential regulation of gene expression by protein kinase C isozymes as determined by genome-wide expression analysis. J Biol Chem. 2011;286(13):11254 11264. 10.1074/jbc.M110.194332) PubMed DOI PMC
Koussounadis A, Langdon SP, Um IH, Harrison DJ, Smith VA. Relationship between differentially expressed mRNA and mRNA-protein correlations in a xenograft model system. Sci Rep. 2015;5:10775. PubMed PMC
Singh A. Negative feedback through mRNA provides the best control of gene-expression noise. IEEE Trans Nanobiosci. 2011;10(3):194 200. 10.1109/TNB.2011.2168826) PubMed DOI
Stapleton JA, Endo K, Fujita Y.et al. Feedback control of ProteinExpression in MammalianCells by tunable synthetic translational inhibition. ACS Synth Biol. 2012;1(3):83-88. 10.1021/sb200005w) PubMed DOI PMC
Thomas JD, Johannes GJ. Identification of mRNAs that continue to associate with polysomes during hypoxia. RNA. 2007;13(7):1116-1131. 10.1261/rna.534807) PubMed DOI PMC
Vervliet T. Ryanodine receptors in autophagy: implications for neurodegenerative diseases? Front Cell Neurosci. 2018;12:89. 10.3389/fncel.2018.00089) PubMed DOI PMC
Oltmanns KM, Gehring H, Rudolf S.et al. Hypoxia causes glucose intolerance in humans. Am J Respir Crit Care Med. 2004;169(11):1231 1237. 10.1164/rccm.200308-1200OC) PubMed DOI
Michiels C. Physiological and pathological responses to hypoxia. Am J Pathol. 2004;164(6):1875-1882. 10.1016/S0002-9440(10)63747-9) PubMed DOI PMC
Pavlikova N, Weiszenstein M, Pala J.et al. The effect of cultureware surfaces on functional and structural components of differentiated 3T3-L1 preadipocytes. Cell Mol Biol Lett. 2015;20(5):919 936. 10.1515/cmble-2015-0054) PubMed DOI
Hubbi ME, Semenza GL. Regulation of cell proliferation by hypoxia-inducible factors. Am J Physiol Cell Physiol. 2015;309(12):C775-C782. 10.1152/ajpcell.00279.2015) PubMed DOI PMC