• This record comes from PubMed

Impacts of Invasive Australian Acacias on Soil Bacterial Community Composition, Microbial Enzymatic Activities, and Nutrient Availability in Fynbos Soils

. 2021 Oct ; 82 (3) : 704-721. [epub] 20210129

Language English Country United States Media print-electronic

Document type Journal Article

Grant support
89967 South Africa National Research Foundation
109244 South African National Research Foundation
109683 South African National Research Foundation
EXPRO 19-28807X Czech Science Foundation
RVO 67985939 The Czech Academy of Sciences

Links

PubMed 33515051
DOI 10.1007/s00248-021-01683-1
PII: 10.1007/s00248-021-01683-1
Knihovny.cz E-resources

Invasive plants often impact soil conditions, notably through changes in soil chemistry and microbial community composition, potentially leading to altered soil functionality. We determine the impacts of invasive nitrogen-fixing Australian Acacia trees on soil chemistry and function (carbon, nitrogen, and phosphorus cycling) in South Africa's Core Cape Subregion, and whether any differences in soil function are linked to differences in soil chemical properties and bacterial community composition between neighbouring acacia-invaded and uninvaded sites. We do so by using Illumina MiSeq sequencing data together with soil chemistry and soil enzyme activity profiles. Acacias significantly increased levels of soil nitrogen (NO3-, NH4+, and total N), C, and pH. Although we did not find evidence that acacias affected soil bacterial community diversity, we did find them to alter bacterial community composition. Acacias also significantly elevated microbial phosphatase activity, but not β-glucosidase, whilst having contrasting effects on urease. Changes in soil chemical properties under acacia invasion were found to correlate with changes in enzyme activities for urease and phosphatase. Similarly, changes in soil bacterial community composition were correlated to changes in phosphatase enzymatic activity levels under acacia invasion. Whilst we found evidence for acacias altering soil function by changing soil chemical properties and bacterial community composition, these impacts appear to be specific to local site conditions.

See more in PubMed

Vitousek PM, D’Antonio CM, Loope LL et al (1997) Introduced species: a significant component of human-caused global environmental change the scope and distribution of invasions. N Z J Ecol 21:1–16

Meyerson LA, Mooney HA (2007) Invasive alien species in an era of globalization. Front Ecol Environ 5:199–208 DOI

Mack RN, Simberloff D, Lonsdale WM et al (2000) Issues in ecology. Ecol Appl 10:689–710. https://doi.org/10.1890/0012-9623(2005)86[249b:IIE]2.0.CO;2 DOI

Seebens H, Blackburn TM, Dyer EE, Genovesi P, Hulme PE, Jeschke JM, Pagad S, Pyšek P, Winter M, Arianoutsou M, Bacher S, Blasius B, Brundu G, Capinha C, Celesti-Grapow L, Dawson W, Dullinger S, Fuentes N, Jäger H, Kartesz J, Kenis M, Kreft H, Kühn I, Lenzner B, Liebhold A, Mosena A, Moser D, Nishino M, Pearman D, Pergl J, Rabitsch W, Rojas-Sandoval J, Roques A, Rorke S, Rossinelli S, Roy HE, Scalera R, Schindler S, Štajerová K, Tokarska-Guzik B, van Kleunen M, Walker K, Weigelt P, Yamanaka T, Essl F (2017) No saturation in the accumulation of alien species worldwide. Nat Commun 8:1–9. https://doi.org/10.1038/ncomms14435 DOI

Corbin JD, D’Antonio CM (2012) Gone but not forgotten? invasive plants’ legacies on community and ecosystem properties. Invasive Plant Sci Manag 5:117–124. https://doi.org/10.1614/IPSM-D-11-00005.1 DOI

Hejda M, Pyšek P, Jarošík V (2009) Impact of invasive plants on the species richness, diversity and composition of invaded communities. J Ecol 97:393–403. https://doi.org/10.1111/j.1365-2745.2009.01480.x DOI

Michelan TS, Thomaz SM, Bando FM, Bini LM (2018) Competitive effects hinder the recolonization of native species in environments densely occupied by one invasive exotic species. Front Plant Sci 9. https://doi.org/10.3389/fpls.2018.01261

Li WH, Zhang CB, Jiang HB, Xin GR, Yang ZY (2006) Changes in soil microbial community associated with invasion of the exotic weed, Mikania micrantha H.B.K. Plant Soil 281:309–324. https://doi.org/10.1007/s11104-005-9641-3 DOI

Souza-Alonso P, Novoa A, González L (2014) Soil biochemical alterations and microbial community responses under Acacia dealbata Link invasion. Soil Biol Biochem 79:100–108. https://doi.org/10.1016/j.soilbio.2014.09.008 DOI

Souza-Alonso P, Guisande-Collazo A, González L (2015) Gradualism in Acacia dealbata link invasion: impact on soil chemistry and microbial community over a chronological sequence. Soil Biol Biochem 80:315–323. https://doi.org/10.1016/j.soilbio.2014.10.022 DOI

Kourtev PS, Ehrenfeld JG, Häggblom M (2002) Exotic plant species alter the microbial community structure and function in the soil. Ecology 83:3152–3166 DOI

Gibbons SM, Lekberg Y, Mummey DL et al (2017) Invasive plants rapidly reshape soil properties in a grassland ecosystem. mSystems 2:e00178–e00116. https://doi.org/10.1128/mSystems.00178-16 PubMed DOI PMC

Brussaard L, Behan-Pelletier VM, Bignell DE et al (1997) Biodiversity and ecosystem functioning in soil. Ambio 26:563–570. https://doi.org/10.2307/1313535 DOI

Fisk MC, Fahey TJ (2001) Microbial biomass and nitrogen cycling responses to fertilization and litter removal in young Northern hardwood forests. Biogeochemistry 53:201–223 DOI

Allison SD, Vitousek PM (2005) Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biol Biochem 37:937–944. https://doi.org/10.1016/j.soilbio.2004.09.014 DOI

Nannipieri P, Ascher J, Ceccherini L et al (2017) Microbial diversity and soil functions. Eur J Soil Sci 68:12–26 DOI

Bordenstein SR, Theis KR (2015) Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLoS Biol 13:e1002226. https://doi.org/10.1371/journal.pbio.1002226 PubMed DOI PMC

Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486. https://doi.org/10.1016/j.tplants.2012.04.001 PubMed DOI

Xiang X, Gibbons SM, Li H, Shen H, Fang J, Chu H (2018) Shrub encroachment is associated with changes in soil bacterial community composition in a temperate grassland ecosystem. Plant Soil 425:539–551. https://doi.org/10.1007/s11104-018-3605-x DOI

Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503–523. https://doi.org/10.1007/s10021-002-0151-3 DOI

Liao JD, Boutton TW (2008) Soil microbial biomass response to woody plant invasion of grassland. Soil Biol Biochem 40:1207–1216. https://doi.org/10.1016/j.soilbio.2007.12.018 DOI

Liao C, Peng R, Luo Y, Zhou X, Wu X, Fang C, Chen J, Li B (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol 177:706–714. https://doi.org/10.1111/j.1469-8137.2007.02290.x PubMed DOI

Tharayil N, Bhowmik P, Alpert P, Walker E, Amarasiriwardena D, Xing B (2009) Dual purpose secondary compounds: phytotoxin of Centaurea diffusa also facilitates nutrient uptake. New Phytol 181:424–434. https://doi.org/10.1111/j.1469-8137.2008.02647.x PubMed DOI

Weidenhamer JD, Callaway RM (2010) Direct and indirect effects of invasive plants on soil chemistry and ecosystem function. J Chem Ecol 36:59–69. https://doi.org/10.1007/s10886-009-9735-0 PubMed DOI

Coats VC, Rumpho ME (2014) The rhizosphere microbiota of plant invaders: an overview of recent advances in the microbiomics of invasive plants. Front Microbiol 5:1–10. https://doi.org/10.3389/fmicb.2014.00368 DOI

Corbin JD, Antonio CMD (2004) Symposium effects of exotic species on soil nitrogen cycling: implications for restoration. Weed Technol 18:1464–1467 DOI

Rice SK, Westerman B, Federici R (2004) Impacts of the exotic, nitrogen-fixing black locust (Robinia pseudoacacia) on nitrogen-cycling in a pine-oak system. Plant Ecol 174:97–107 DOI

Lekberg Y, Bever JD, Bunn RA, Callaway RM, Hart MM, Kivlin SN, Klironomos J, Larkin BG, Maron JL, Reinhart KO, Remke M, van der Putten WH (2018) Relative importance of competition and plant–soil feedback, their synergy, context dependency and implications for coexistence. Ecol Lett 21:1268–1281. https://doi.org/10.1111/ele.13093 PubMed DOI

Richardson DM, Le Roux JJ, Wilson JRU (2015) Australian acacias as invasive species: lessons to be learnt from regions with long planting histories. South For a J For Sci 77:31–39. https://doi.org/10.2989/20702620.2014.999305 DOI

Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive alien species–a global review. Divers Distrib 17:788–809. https://doi.org/10.1111/j.1472-4642.2011.00782.x DOI

Richardson DM, Carruthers J, Hui C, Impson FAC, Miller JT, Robertson MP, Rouget M, le Roux JJ, Wilson JRU (2011) Human-mediated introductions of Australian acacias-a global experiment in biogeography. Divers Distrib 17:771–787. https://doi.org/10.1111/j.1472-4642.2011.00824.x DOI

Franche C, Lindström K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59. https://doi.org/10.1007/s11104-008-9833-8 DOI

Gaertner M, Biggs R, Te Beest M et al (2014) Invasive plants as drivers of regime shifts: identifying high-priority invaders that alter feedback relationships. Divers Distrib 20:733–744. https://doi.org/10.1111/ddi.12182 DOI

Witkowski AETF (1991) Effects of invasive alien acacias on nutrient cycling in the coastal lowlands of the Cape Fynbos. J Appl Ecol 28:1–15 DOI

Yelenik SG, Stock WD, Richardson DM (2004) Ecosystem level impacts of invasive Acacia saligna in the South African Fynbos. Restor Ecol 12:44–51 DOI

Slabbert E, Jacobs SM, Jacobs K (2014) The soil bacterial communities of South African fynbos riparian ecosystems invaded by Australian Acacia species. PLoS One 9:e86560. https://doi.org/10.1371/journal.pone.0086560 PubMed DOI PMC

Kamutando CN, Vikram S, Kamgan-Nkuekam G, Makhalanyane TP, Greve M, Roux JJL, Richardson DM, Cowan D, Valverde A (2017) Soil nutritional status and biogeography influence rhizosphere microbial communities associated with the invasive tree Acacia dealbata. Sci Rep 7:1–9. https://doi.org/10.1038/s41598-017-07018-w DOI

Le Roux JJ, Ellis AG, van Zyl L-M et al (2018) Importance of soil legacy effects and successful mutualistic interactions during Australian acacia invasions in nutrient-poor environments. J Ecol 106:2071–2081. https://doi.org/10.1111/1365-2745.12965 DOI

Marchante E, Kjøller A, Struwe S, Freitas H (2009) Soil recovery after removal of the N DOI

Holmes PM, Cowling RM (1997) The effects of invasion by Acacia saligna on the guild structure and regeneration capabilities of south african fynbos shrublands. J Appl Ecol 34:317–332. https://doi.org/10.2307/2404879 DOI

Daehler CC (2003) Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annu Rev Ecol Evol Syst 34:183–211. https://doi.org/10.1146/annurev.ecolsys.34.011802.132403 DOI

Manning JC, Goldblatt P (2012) Plants of The Greater Cape Floristic Region 1: The Core Cape Flora. South African National Biodiversity Institute, Pretoria

Keet J-H, Ellis AG, Hui C, Le Roux JJ (2019) Strong spatial and temporal turnover of soil bacterial communities in South Africa’s hyperdiverse fynbos biome. Soil Biol Biochem 136:107541. https://doi.org/10.1016/j.soilbio.2019.107541 DOI

SSSA (1996) Methods of soil analysis, Part 3. Soil Science Society of America, Madison

Novoa A, Rodríguez R, Richardson DM, González L (2014) Soil quality: a key factor in understanding plant invasion? The case of Carpobrotus edulis (L.) N.E.Br. Biol Invasions 16:429–443. https://doi.org/10.1007/s10530-013-0531-y DOI

Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One 6:e27310. https://doi.org/10.1371/journal.pone.0027310 PubMed DOI PMC

Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. https://doi.org/10.1128/AEM.01541-09 PubMed DOI PMC

Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. https://doi.org/10.1093/bioinformatics/btr381 PubMed DOI PMC

Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. https://doi.org/10.1128/AEM.00062-07 PubMed DOI PMC

R Core Team (2020) R: A language and environment for statistical computing

Narum SR (2006) Beyond Bonferroni: less conservative analyses for conservation genetics. Conserv Genet 7:783–787. https://doi.org/10.1007/s10592-005-9056-y DOI

Hill MO (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54:427–432. https://doi.org/10.2307/1934352 DOI

Jost L (2006) Entropy and diversity. Oikos 113:363–375. https://doi.org/10.1111/j.2006.0030-1299.14714.x DOI

Jost L (2010) The relation between evenness and diversity. Diversity 2:207–232. https://doi.org/10.3390/d2020207 DOI

Oksanen JF, Blanchet FG, Friendly M, et al (2019) Vegan: community ecology package. R package version 2.5-6

Jost L (2007) Partitioning diversity into independent alpha and beta components. Ecology 88:2427–2439 DOI

Charney N, Record S (2012) Vegetarian: Jost diversity measures for community data. R package version 1.2

Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:1–18. https://doi.org/10.1186/gb-2011-12-6-r60 DOI

Sauvadet M, Chauvat M, Brunet N, Bertrand I (2017) Can changes in litter quality drive soil fauna structure and functions? Soil Biol Biochem 107:94–103. https://doi.org/10.1016/j.soilbio.2016.12.018 DOI

Lichstein JW (2007) Multiple regression on distance matrices: a multivariate spatial analysis tool. Plant Ecol 188:117–131. https://doi.org/10.1007/s11258-006-9126-3 DOI

Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22:1–19. https://doi.org/10.18637/jss.v022.i07 DOI

Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x DOI

Lorenzo P, González L, Reigosa MJ (2010) The genus Acacia as invader: the characteristic case of Acacia dealbata Link in Europe. Ann For Sci 67:101p1–101p11. https://doi.org/10.1051/forest/2009082 DOI

González-Muñoz N, Costa-Tenorio M, Espigares T (2012) Invasion of alien Acacia dealbata on Spanish Quercus robur forests: impact on soils and vegetation. For Ecol Manag 269:214–221. https://doi.org/10.1016/j.foreco.2011.12.026 DOI

Marchante E, Kjøller A, Struwe S, Freitas H (2008) Invasive Acacia longifolia induce changes in the microbial catabolic diversity of sand dunes. Soil Biol Biochem 40:2563–2568. https://doi.org/10.1016/j.soilbio.2008.06.017 DOI

Lazzaro L, Giuliani C, Fabiani A, Agnelli AE, Pastorelli R, Lagomarsino A, Benesperi R, Calamassi R, Foggi B (2014) Soil and plant changing after invasion: the case of Acacia dealbata in a Mediterranean ecosystem. Sci Total Environ 497–498:491–498. https://doi.org/10.1016/j.scitotenv.2014.08.014 PubMed DOI

Hellmann C, Sutter R, Rascher KG, Máguas C, Correia O, Werner C (2011) Impact of an exotic N DOI

Yelenik SG, Stock WD, Richardson DM (2007) Functional group identity does not predict invader impacts: differential effects of nitrogen-fixing exotic plants on ecosystem function. Biol Invasions 9:117–125. https://doi.org/10.1007/s10530-006-0008-3 DOI

Castro-Díez P, Godoy O, Alonso A, Gallardo A, Saldaña A (2014) What explains variation in the impacts of exotic plant invasions on the nitrogen cycle? A meta-analysis. Ecol Lett 17:1–12. https://doi.org/10.1111/ele.12197 PubMed DOI

Cowling RM (1990) Diversity components in a species-rich area of the Cape Floristic Region. J Veg Sci 1:699–710 DOI

Lorenzo P, Rodríguez-Echeverría S, González L, Freitas H (2010) Effect of invasive Acacia dealbata Link on soil microorganisms as determined by PCR-DGGE. Appl Soil Ecol 44:245–251. https://doi.org/10.1016/j.apsoil.2010.01.001 DOI

Rebelo AG, Boucher C, Helme N et al (2006) Fynbos Biome. In: Mucina L, Rutherford MC (eds) The vegetation of South Africa, Lesotho and Swaziland. Strelitzia. South African National Biodiversity Institute, Pretoria, pp 53–219

Cowling RM, Lombard AT (2002) Heterogeneity, speciation/extinction history and climate: explaining regional plant diversity patterns in the Cape Floristic Region. Divers Distrib 8:163–179 DOI

Janssen PH (2006) Identifying the dominant soil bacterial taxa in libraries of 16s rRNA and 16s rRNA genes. Appl Environ Microbiol 72:1719–1728. https://doi.org/10.1128/AEM.72.3.1719 PubMed DOI PMC

DeBruyn JM, Nixon LT, Fawaz MN et al (2011) Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil. Appl Environ Microbiol 77:6295–6300. https://doi.org/10.1128/AEM.05005-11 PubMed DOI PMC

Dye P, Jarmain C (2004) Water use by black wattle (Acacia mearnsii): implications for the link between removal of invading trees and catchment streamflow response. S Afr J Sci 100:40–44

Hiraishi A, Matsuzawa Y, Kanbe T, Wakao N (2000) Acidisphaera rubrifaciens gen. nov., sp. nov., an aerobic bacteriochlorophyll-containing bacterium isolated from acidic environments. Int J Syst Evol Microbiol 50:1539–1546 DOI

Hamamura N, Olson SH, Ward DM, Inskeep WP (2005) Diversity and functional analysis of bacterial communities associated with natural hydrocarbon seeps in acidic soils at Rainbow Springs, Yellowstone National Park. Appl Environ Microbiol 71:5943–5950. https://doi.org/10.1128/AEM.71.10.5943 PubMed DOI PMC

Palaniyandi SA, Yang SH, Zhang L, Suh JW (2013) Effects of actinobacteria on plant disease suppression and growth promotion. Appl Microbiol Biotechnol 97:9621–9636. https://doi.org/10.1007/s00253-013-5206-1 PubMed DOI

Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120. https://doi.org/10.1128/AEM.00335-09 PubMed DOI PMC

Nimaichand S, Devi AM, Tamreihao K, Ningthoujam DS, Li WJ (2015) Actinobacterial diversity in limestone deposit sites in Hundung, Manipur (India) and their antimicrobial activities. Front Microbiol 6:1–10. https://doi.org/10.3389/fmicb.2015.00413 DOI

Shange RS, Ankumah RO, Ibekwe AM, Zabawa R, Dowd SE (2012) Distinct soil bacterial communities revealed under a diversely managed agroecosystem. PLoS One 7:e40338. https://doi.org/10.1371/journal.pone.0040338 PubMed DOI PMC

Philippot L, Andersson SGE, Battin TJ, Prosser JI, Schimel JP, Whitman WB, Hallin S (2010) The ecological coherence of high bacterial taxonomic ranks. Nat Rev Microbiol 8:523–530 DOI

Bardhan S, Jose S, Jenkins MA, Webster CR, Udawatta RP, Stehn SE (2012) Microbial community diversity and composition across a gradient of soil acidity in spruce-fir forests of the southern Appalachian Mountains. Appl Soil Ecol 61:60–68. https://doi.org/10.1016/j.apsoil.2012.04.010 DOI

Sun H, Terhonen E, Koskinen K, Paulin L, Kasanen R, Asiegbu FO (2014) Bacterial diversity and community structure along different peat soils in boreal forest. Appl Soil Ecol 74:37–45. https://doi.org/10.1016/j.apsoil.2013.09.010 DOI

Lemaire B, Dlodlo O, Chimphango S, Stirton C, Schrire B, Boatwright JS, Honnay O, Smets E, Sprent J, James EK, Muasya AM (2015) Symbiotic diversity, specificity and distribution of rhizobia in native legumes of the Core Cape Subregion (South Africa). FEMS Microbiol Ecol 91:1–17. https://doi.org/10.1093/femsec/fiu024 PubMed DOI

Singleton DR, Furlong MA, Peacock AD, White DC, Coleman DC, Whitman WB (2003) Solirubrobacter pauli gen. nov., sp. nov., a mesophilic bacterium within the Rubrobacteridae related to common soil clones. Int J Syst Evol Microbiol 53:485–490. https://doi.org/10.1099/ijs.0.02438-0 PubMed DOI

Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci 103:626–631. https://doi.org/10.1073/pnas.0507535103 PubMed DOI PMC

Martiny JBH, Eisen JA, Penn K, Allison SD, Horner-Devine MC (2011) Drivers of bacterial β-diversity depend on spatial scale. Proc Natl Acad Sci 108:7850–7854. https://doi.org/10.1073/pnas.1016308108 PubMed DOI PMC

O’Brien SL, Gibbons SM, Owens SM et al (2016) Spatial scale drives patterns in soil bacterial diversity. Environ Microbiol 18:2039–2051. https://doi.org/10.1111/1462-2920.13231 PubMed DOI PMC

Vos M, Wolf AB, Jennings SJ, Kowalchuk GA (2013) Micro-scale determinants of bacterial diversity in soil. FEMS Microbiol Rev 37:936–954. https://doi.org/10.1111/1574-6976.12023 PubMed DOI

Paterson E, Gebbing T, Abel C, Sim A, Telfer G (2007) Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytol 173:600–610. https://doi.org/10.1111/j.1469-8137.2006.01931.x PubMed DOI

Malinich E, Lynn-Bell N, Kourtev PS (2017) The effect of the invasive Elaeagnus umbellata on soil microbial communities depends on proximity of soils to plants. Ecosphere 8:e01827. https://doi.org/10.1002/ecs2.1827 DOI

Gibbons SM, Gilbert JA (2015) Microbial diversity-exploration of natural ecosystems and microbiomes. Curr Opin Genet Dev 35:66–72. https://doi.org/10.1016/j.gde.2015.10.003 PubMed DOI PMC

Thompson LR, Sanders JG, McDonald D et al (2017) A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551:457–463. https://doi.org/10.1038/nature24621 PubMed DOI PMC

Wolfe BE, Klironomos JN (2005) Breaking new ground: soil communities and exotic plant invasion. Bioscience 55:477–487 DOI

Kourtev PS, Ehrenfeld JG, Häggblom M (2003) Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities. Soil Biol Biochem 35:895–905. https://doi.org/10.1016/S0038-0717(03)00120-2 DOI

Cao H, Chen R, Wang L, Jiang L, Yang F, Zheng S, Wang G, Lin X (2016) Soil pH, total phosphorus, climate and distance are the major factors influencing microbial activity at a regional spatial scale. Sci Rep 6:25815. https://doi.org/10.1038/srep25815 PubMed DOI PMC

Green J, Holmes A, Westoby M et al (2004) Spatial scaling of microbial diversity. Nature 432:747–750 DOI

Soininen J, Mcdonald R, Hillebrand H (2007) The distance decay of similarity in ecological communities. Ecography (Cop) 30:3–12. https://doi.org/10.1111/j.2006.0906-7590.04817.x DOI

Chapuis-Lardy L, Vanderhoeven S, Dassonville N, Koutika LS, Meerts P (2006) Effect of the exotic invasive plant Solidago gigantea on soil phosphorus status. Biol Fertil Soils 42:481–489. https://doi.org/10.1007/s00374-005-0039-4 DOI

Waldrop MP, Balser TC, Firestone MK (2000) Linking microbial community composition to function in a tropical soil. Soil Biol Biochem 32:1837–1846. https://doi.org/10.1016/S0038-0717(00)00157-7 DOI

Koranda M, Kaiser C, Fuchslueger L, Kitzler B, Sessitsch A, Zechmeister-Boltenstern S, Richter A (2013) Seasonal variation in functional properties of microbial communities in beech forest soil. Soil Biol Biochem 60:95–104. https://doi.org/10.1016/j.soilbio.2013.01.025 PubMed DOI PMC

Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, Owens S, Gilbert JA, Wall DH, Caporaso JG (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci 109:21390–21395. https://doi.org/10.1073/pnas.1215210110 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...