Congenital Diarrhea and Cholestatic Liver Disease: Phenotypic Spectrum Associated with MYO5B Mutations
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
RC2 DK118640
NIDDK NIH HHS - United States
18019
Oesterreichische Nationalbank
0404/2386
Tiroler Wissenschaftsförderung
16678
Oesterreichische Nationalbank
PubMed
33525641
PubMed Central
PMC7865828
DOI
10.3390/jcm10030481
PII: jcm10030481
Knihovny.cz E-resources
- Keywords
- MYO5B, PFIC, congenital diarrheal diseases, enteropathy, genotype–phenotype correlation, lack of protein, microvillus inclusion disease, myosin Vb, progressive familial intrahepatic cholestasis, tail domain,
- Publication type
- Journal Article MeSH
Myosin Vb (MYO5B) is a motor protein that facilitates protein trafficking and recycling in polarized cells by RAB11- and RAB8-dependent mechanisms. Biallelic MYO5B mutations are identified in the majority of patients with microvillus inclusion disease (MVID). MVID is an intractable diarrhea of infantile onset with characteristic histopathologic findings that requires life-long parenteral nutrition or intestinal transplantation. A large number of such patients eventually develop cholestatic liver disease. Bi-allelic MYO5B mutations are also identified in a subset of patients with predominant early-onset cholestatic liver disease. We present here the compilation of 114 patients with disease-causing MYO5B genotypes, including 44 novel patients as well as 35 novel MYO5B mutations, and an analysis of MYO5B mutations with regard to functional consequences. Our data support the concept that (1) a complete lack of MYO5B protein or early MYO5B truncation causes predominant intestinal disease (MYO5B-MVID), (2) the expression of full-length mutant MYO5B proteins with residual function causes predominant cholestatic liver disease (MYO5B-PFIC), and (3) the expression of mutant MYO5B proteins without residual function causes both intestinal and hepatic disease (MYO5B-MIXED). Genotype-phenotype data are deposited in the existing open MYO5B database in order to improve disease diagnosis, prognosis, and genetic counseling.
1st Department of Pediatrics Athens University Medical School 11527 Athens Greece
Aghia Sofia Children's Hospital Neonatal Intensive Care Unit B 115 27 Athens Greece
Ankara Child Health and Diseases Training and Research Hospital Neonatology 06120 Ankara Turkey
Austrian Drug Screening Institute ADSI 6020 Innsbruck Austria
Children's Hospital Tübingen 72076 Tübingen Germany
Department of Neonatology Johannes Kepler University Linz A 4020 Linz Austria
Department of Pediatrics 1 Medical University of Innsbruck A 6020 Innsbruck Austria
Department of Pediatrics University of Oxford Oxford OX3 9DU UK
Division of Cell Biology Biocenter Innsbruck Medical University A 6020 Innsbruck Austria
Division of Cell Biology Medical University of Innsbruck A 6020 Innsbruck Austria
Division of Human Genetics Medical University of Innsbruck A 6020 Innsbruck Austria
Emma Children's Hospital AMC 1105 Amsterdam The Netherlands
Genetics Metabolics Service Tawam Hospital Al Ain 15258 United Arab Emirates
Hospital Universitario San Vicente de Paúl Medellín Antioquia 50022 Colombia
Institute of Histology and Embryology Medical University of Innsbruck A 6020 Innsbruck Austria
Paediatrics at the Medical Faculty Université de Paris 75005 Paris France
Pediatric Gastroenterology Shaare Zedek Medical Center 9103102 Jerusalem Israel
SW Thames Regional Genetics Service St George's University NHS Foundation Trust London SW17 0QT UK
Translational Gastroenterology Unit University of Oxford Oxford OX3 9DU UK
Unidade de Gastrenterologia Pediátrica Centro Hospitalar do Porto 4099 001 Porto Portugal
See more in PubMed
Vogel G.F., Janecke A.R., Krainer I.M., Gutleben K., Witting B., Mitton S.G., Mansour S., Ballauff A., Roland J.T., Engevik A.C., et al. Abnormal Rab11-Rab8-vesicles cluster in enterocytes of patients with microvillus inclusion disease. Traffic. 2017;18:453–464. doi: 10.1111/tra.12486. PubMed DOI PMC
Davidson G.P., Cutz E., Hamilton J.R., Gall D.G. Familial enteropathy: A syndrome of protracted diarrhea from birth, failure to thrive, and hypoplastic villus atrophy. Gastroenterology. 1978;75:783–790. doi: 10.1016/0016-5085(78)90458-4. PubMed DOI
Cutz E., Rhoads J.M., Drumm B., Sherman P.M., Durie P.R., Forstner G.G. Microvillus inclusion disease: An inherited defect of brush-border assembly and differentiation. N. Engl. J. Med. 1989;320:646–651. doi: 10.1056/NEJM198903093201006. PubMed DOI
Ruemmele F.M., Schmitz J., Goulet O. Microvillous inclusion disease (microvillous atrophy) Orphanet J. Rare Dis. 2006;1:22. doi: 10.1186/1750-1172-1-22. PubMed DOI PMC
Wiegerinck C.L., Janecke A.R., Schneeberger K., Vogel G.F., van Haaften-Visser D.Y., Escher J.C., Adam R., Thoni C.E., Pfaller K., Jordan A.J., et al. Loss of syntaxin 3 causes variant microvillus inclusion disease. Gastroenterology. 2014;147:65–68. doi: 10.1053/j.gastro.2014.04.002. PubMed DOI
Stepensky P., Bartram J., Barth T.F., Lehmberg K., Walther P., Amann K., Philips A.D., Beringer O., Zur Stadt U., Schulz A., et al. Persistent defective membrane trafficking in epithelial cells of patients with familial hemophagocytic lymphohistiocytosis type 5 due to STXBP2/MUNC18-2 mutations. Pediatr. Blood Cancer. 2013;60:1215–1222. doi: 10.1002/pbc.24475. PubMed DOI
Dhekne H.S., Pylypenko O., Overeem A.W., Ferreira R.J., van der Velde K.J., Rings E., Posovszky C., Swertz M.A., Houdusse A., van IJzendoorn S.C.D. MYO5B, STX3, and STXBP2 mutations reveal a common disease mechanism that unifies a subset of congenital diarrheal disorders: A mutation update. Hum. Mutat. 2018;39:333–344. doi: 10.1002/humu.23386. PubMed DOI PMC
Vogel G.F., van Rijn J.M., Krainer I.M., Janecke A.R., Posovszky C., Cohen M., Searle C., Jantchou P., Escher J.C., Patey N., et al. Disrupted apical exocytosis of cargo vesicles causes enteropathy in FHL5 patients with Munc18-2 mutations. JCI Insight. 2017;2 doi: 10.1172/jci.insight.94564. PubMed DOI PMC
Girard M., Lacaille F., Verkarre V., Mategot R., Feldmann G., Grodet A., Sauvat F., Irtan S., Davit-Spraul A., Jacquemin E., et al. MYO5B and bile salt export pump contribute to cholestatic liver disorder in microvillous inclusion disease. Hepatology. 2014;60:301–310. doi: 10.1002/hep.26974. PubMed DOI
Gonzales E., Taylor S.A., Davit-Spraul A., Thebaut A., Thomassin N., Guettier C., Whitington P.F., Jacquemin E. MYO5B mutations cause cholestasis with normal serum gamma-glutamyl transferase activity in children without microvillous inclusion disease. Hepatology. 2017;65:164–173. doi: 10.1002/hep.28779. PubMed DOI
Qiu Y.L., Gong J.Y., Feng J.Y., Wang R.X., Han J., Liu T., Lu Y., Li L.T., Zhang M.H., Sheps J.A., et al. Defects in myosin VB are associated with a spectrum of previously undiagnosed low gamma-glutamyltransferase cholestasis. Hepatology. 2017;65:1655–1669. doi: 10.1002/hep.29020. PubMed DOI PMC
Bull L.N., Carlton V.E., Stricker N.L., Baharloo S., DeYoung J.A., Freimer N.B., Magid M.S., Kahn E., Markowitz J., DiCarlo F.J., et al. Genetic and morphological findings in progressive familial intrahepatic cholestasis (Byler disease [PFIC-1] and Byler syndrome): Evidence for heterogeneity. Hepatology. 1997;26:155–164. doi: 10.1002/hep.510260121. PubMed DOI
Sambrotta M., Strautnieks S., Papouli E., Rushton P., Clark B.E., Parry D.A., Logan C.V., Newbury L.J., Kamath B.M., Ling S., et al. Mutations in TJP2 cause progressive cholestatic liver disease. Nat. Genet. 2014;46:326–328. doi: 10.1038/ng.2918. PubMed DOI PMC
Droge C., Bonus M., Baumann U., Klindt C., Lainka E., Kathemann S., Brinkert F., Grabhorn E., Pfister E.D., Wenning D., et al. Sequencing of FIC1, BSEP and MDR3 in a large cohort of patients with cholestasis revealed a high number of different genetic variants. J. Hepatol. 2017;67:1253–1264. doi: 10.1016/j.jhep.2017.07.004. PubMed DOI
Overeem A.W., Li Q., Qiu Y.L., Carton-Garcia F., Leng C., Klappe K., Dronkers J., Hsiao N.H., Wang J.S., Arango D., et al. A Molecular Mechanism Underlying Genotype-Specific Intrahepatic Cholestasis Resulting From MYO5B Mutations. Hepatology. 2020;72:213–229. doi: 10.1002/hep.31002. PubMed DOI PMC
van der Velde K.J., Dhekne H.S., Swertz M.A., Sirigu S., Ropars V., Vinke P.C., Rengaw T., van den Akker P.C., Rings E.H., Houdusse A., et al. An overview and online registry of microvillus inclusion disease patients and their MYO5B mutations. Hum. Mutat. 2013;34:1597–1605. doi: 10.1002/humu.22440. PubMed DOI
Muller T., Hess M.W., Schiefermeier N., Pfaller K., Ebner H.L., Heinz-Erian P., Ponstingl H., Partsch J., Rollinghoff B., Kohler H., et al. MYO5B mutations cause microvillus inclusion disease and disrupt epithelial cell polarity. Nat. Genet. 2008;40:1163–1165. doi: 10.1038/ng.225. PubMed DOI
Ruemmele F.M., Muller T., Schiefermeier N., Ebner H.L., Lechner S., Pfaller K., Thoni C.E., Goulet O., Lacaille F., Schmitz J., et al. Loss-of-function of MYO5B is the main cause of microvillus inclusion disease: 15 novel mutations and a CaCo-2 RNAi cell model. Hum. Mutat. 2010;31:544–551. doi: 10.1002/humu.21224. PubMed DOI
Klee K.M.C., Janecke A.R., Civan H.A., Rosipal S., Heinz-Erian P., Huber L.A., Muller T., Vogel G.F. AP1S1 missense mutations cause a congenital enteropathy via an epithelial barrier defect. Hum. Genet. 2020;139:1247–1259. doi: 10.1007/s00439-020-02168-w. PubMed DOI PMC
Ghosh R., Oak N., Plon S.E. Evaluation of in silico algorithms for use with ACMG/AMP clinical variant interpretation guidelines. Genome Biol. 2017;18:225. doi: 10.1186/s13059-017-1353-5. PubMed DOI PMC
van IJzendoorn S.C.D., Li Q., Qiu Y.L., Wang J.S., Overeem A.W. Unequal effects of MYO5B mutations in liver and intestine determine the clinical presentation of low-GGT cholestasis. Hepatology. 2020 doi: 10.1002/hep.31430. PubMed DOI PMC
Schneeberger K., Vogel G.F., Teunissen H., van Ommen D.D., Begthel H., El Bouazzaoui L., van Vugt A.H., Beekman J.M., Klumperman J., Muller T., et al. An inducible mouse model for microvillus inclusion disease reveals a role for myosin Vb in apical and basolateral trafficking. Proc. Natl. Acad. Sci. USA. 2015;112:12408–12413. doi: 10.1073/pnas.1516672112. PubMed DOI PMC
Szperl A.M., Golachowska M.R., Bruinenberg M., Prekeris R., Thunnissen A.M., Karrenbeld A., Dijkstra G., Hoekstra D., Mercer D., Ksiazyk J., et al. Functional characterization of mutations in the myosin Vb gene associated with microvillus inclusion disease. J. Pediatr. Gastroenterol. Nutr. 2011;52:307–313. doi: 10.1097/MPG.0b013e3181eea177. PubMed DOI PMC
Golachowska M.R., van Dael C.M., Keuning H., Karrenbeld A., Hoekstra D., Gijsbers C.F., Benninga M.A., Rings E.H., van Ijzendoorn S.C. MYO5B mutations in patients with microvillus inclusion disease presenting with transient renal Fanconi syndrome. J. Pediatr. Gastroenterol. Nutr. 2012;54:491–498. doi: 10.1097/MPG.0b013e3182353773. PubMed DOI
Erickson R.P., Larson-Thome K., Valenzuela R.K., Whitaker S.E., Shub M.D. Navajo microvillous inclusion disease is due to a mutation in MYO5B. Am. J. Med. Genet. A. 2008;146A:3117–3119. doi: 10.1002/ajmg.a.32605. PubMed DOI
Cockar I., Foskett P., Strautnieks S., Clinch Y., Fustok J., Rahman O., Sutton H., Mtegha M., Fessatou S., Kontaki E., et al. Mutations in Myosin 5B in Children With Early-onset Cholestasis. J. Pediatr. Gastroenterol. Nutr. 2020;71:184–188. doi: 10.1097/MPG.0000000000002740. PubMed DOI
Comegna M., Amato F., Liguori R., Berni Canani R., Spagnuolo M.I., Morroni M., Guarino A., Castaldo G. Two cases of microvillous inclusion disease caused by novel mutations in MYO5B gene. Clin. Case Rep. 2018;6:2451–2456. doi: 10.1002/ccr3.1879. PubMed DOI PMC
Perry A., Bensallah H., Martinez-Vinson C., Berrebi D., Arbeille B., Salomon J., Goulet O., Marinier E., Drunat S., Samson-Bouma M.E., et al. Microvillous atrophy: Atypical presentations. J. Pediatr. Gastroenterol. Nutr. 2014;59:779–785. doi: 10.1097/MPG.0000000000000526. PubMed DOI
Chen C.P., Chiang M.C., Wang T.H., Hsueh C., Chang S.D., Tsai F.J., Wang C.N., Chern S.R., Wang W. Microvillus inclusion disease: Prenatal ultrasound findings, molecular diagnosis and genetic counseling of congenital diarrhea. Taiwan. J. Obstet. Gynecol. 2010;49:487–494. doi: 10.1016/S1028-4559(10)60102-7. PubMed DOI
Mao M., Guo L., Zhang Z., Wang B., Huang S., Song Y., Chen F., Wen W. Phenotypic and genetic analysis of a family affected with microvillus inclusion disease. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2016;33:792–796. doi: 10.3760/cma.j.issn.1003-9406.2016.06.010. PubMed DOI
Fernandez Caamano B., Quiles Blanco M.J., Fernandez Tome L., Burgos Lizaldez E., Sarria Oses J., Molina Arias M., Prieto Bozano G. Intestinal failure and transplantation in microvillous inclusion disease. An. Pediatr. (Barc.) 2015;83:160–165. doi: 10.1016/j.anpede.2015.08.001. PubMed DOI
Croft N.M., Howatson A.G., Ling S.C., Nairn L., Evans T.J., Weaver L.T. Microvillous inclusion disease: An evolving condition. J. Pediatr. Gastroenterol. Nutr. 2000;31:185–189. doi: 10.1097/00005176-200008000-00019. PubMed DOI
Sadiq M., Choudry O., Kashyap A., Velazquez D.M. Congenital diarrhea in a newborn infant: A case report. World J. Clin. Pediatr. 2019;8:43–48. doi: 10.5409/wjcp.v8.i3.43. PubMed DOI PMC
Thiagarajah J.R., Kamin D.S., Acra S., Goldsmith J.D., Roland J.T., Lencer W.I., Muise A.M., Goldenring J.R., Avitzur Y., Martin M.G., et al. Advances in Evaluation of Chronic Diarrhea in Infants. Gastroenterology. 2018;154:2045–2059.e6. doi: 10.1053/j.gastro.2018.03.067. PubMed DOI PMC
Goulet O., Ruemmele F. Causes and management of intestinal failure in children. Gastroenterology. 2006;130:S16–S28. doi: 10.1053/j.gastro.2005.12.002. PubMed DOI
Vogel G.F., Klee K.M., Janecke A.R., Muller T., Hess M.W., Huber L.A. Cargo-selective apical exocytosis in epithelial cells is conducted by Myo5B, Slp4a, Vamp7, and Syntaxin 3. J. Cell Biol. 2015;211:587–604. doi: 10.1083/jcb.201506112. PubMed DOI PMC
Schlegel C., Weis V.G., Knowles B.C., Lapierre L.A., Martin M.G., Dickman P., Goldenring J.R., Shub M.D. Apical Membrane Alterations in Non-intestinal Organs in Microvillus Inclusion Disease. Dig. Dis. Sci. 2018;63:356–365. doi: 10.1007/s10620-017-4867-5. PubMed DOI PMC
Roland J.T., Bryant D.M., Datta A., Itzen A., Mostov K.E., Goldenring J.R. Rab GTPase-Myo5B complexes control membrane recycling and epithelial polarization. Proc. Natl. Acad. Sci. USA. 2011;108:2789–2794. doi: 10.1073/pnas.1010754108. PubMed DOI PMC
Ridlon J.M., Kang D.J., Hylemon P.B., Bajaj J.S. Bile acids and the gut microbiome. Curr. Opin. Gastroenterol. 2014;30:332–338. doi: 10.1097/MOG.0000000000000057. PubMed DOI PMC
Carton-Garcia F., Overeem A.W., Nieto R., Bazzocco S., Dopeso H., Macaya I., Bilic J., Landolfi S., Hernandez-Losa J., Schwartz S., Jr., et al. Myo5b knockout mice as a model of microvillus inclusion disease. Sci. Rep. 2015;5:12312. doi: 10.1038/srep12312. PubMed DOI PMC
Weis V.G., Knowles B.C., Choi E., Goldstein A.E., Williams J.A., Manning E.H., Roland J.T., Lapierre L.A., Goldenring J.R. Loss of MYO5B in mice recapitulates Microvillus Inclusion Disease and reveals an apical trafficking pathway distinct to neonatal duodenum. Cell. Mol. Gastroenterol. Hepatol. 2016;2:131–157. doi: 10.1016/j.jcmgh.2015.11.009. PubMed DOI PMC