Mozart effect in epilepsy: Why is Mozart better than Haydn? Acoustic qualities-based analysis of stereoelectroencephalography

. 2021 May ; 28 (5) : 1463-1469. [epub] 20210224

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33527581

BACKGROUND AND PURPOSE: We aimed to confirm the Mozart effect in epileptic patients using intracerebral electroencephalography recordings and the hypothesis that the reduction of epileptiform discharges (EDs) can be explained by the music's acoustic properties. METHODS: Eighteen epilepsy surgery candidates were implanted with depth electrodes in the temporal medial and lateral cortex. Patients listened to the first movement of Mozart's Sonata for Two Pianos K. 448 and to the first movement of Haydn's Symphony No. 94. Musical features from each composition with respect to rhythm, melody, and harmony were analyzed. RESULTS: Epileptiform discharges in intracerebral electroencephalography were reduced by Mozart's music. Listening to Haydn's music led to reduced EDs only in women; in men, the EDs increased. The acoustic analysis revealed that nondissonant music with a harmonic spectrum and decreasing tempo with significant high-frequency parts has a reducing effect on EDs in men. To reduce EDs in women, the music should additionally be gradually less dynamic in terms of loudness. Finally, we were able to demonstrate that these acoustic characteristics are more dominant in Mozart's music than in Haydn's music. CONCLUSIONS: We confirmed the reduction of intracerebral EDs while listening to classical music. An analysis of the musical features revealed that the acoustic characteristics of music are responsible for suppressing brain epileptic activity. Based on our study, we suggest studying the use of musical pieces with well-defined acoustic properties as an alternative noninvasive method to reduce epileptic activity in patients with epilepsy.

Zobrazit více v PubMed

Rauscher FH, Robinson KD, Jens JJ. Improved maze learning through early music exposure in rats. Neurol Res. 1998;20(5):427-432.

Rauscher FH, Shaw GL, Ky KN. Music and spatial task performance. Nature. 1993;365(6447):611.

Maguire MJ. Music and epilepsy: a critical review. Epilepsia. 2012;53(6):947-961.

Maguire M. Epilepsy and music: practical notes. Pract Neurol. 2017;17(2):86-95.

Hughes JR, Daaboul Y, Fino JJ, Shaw GL. The “Mozart effect” on epileptiform activity. Clin Electroencephalogr. 1998;29(3):109-119.

Hughes JR, Fino JJ, Melyn MA. Is there a chronic change of the “Mozart effect” on epileptiform activity? A case study. Clin Electroencephalogr. 1999;30(2):44-45.

Hughes JR, Fino JJ. The Mozart effect: distinctive aspects of the music - a clue to brain coding? Clin Electroencephalogr. 2000;31(2):94-103.

Hughes JR. The Mozart effect. Epilepsy Behav. 2001;2(5):396-417.

Dastgheib SS, Layegh P, Sadeghi R, Foroughipur M, Shoeibi A, Gorji A. The effects of Mozart’s music on interictal activity in epileptic patients: systematic review and meta-analysis of the literature. Curr Neurol Neurosci Rep. 2014;14(1):1-11.

Kuester G, Rios L, Ortiz A, Miranda M. Effect of music on the recovery of a patient with refractory nonconvulsive status epilepticus. Epilepsy Behav. 2010;18:491-493.

Lin LC, Juan C-T, Chang H-W, et al. Mozart K.448 attenuates spontaneous absence seizure and related high-voltage rhythmic spike discharges in Long Evans rats. Epilepsy Res. 2013;104:234-240.

Hughes JR. The Mozart effect: additional data. Epilepsy Behav. 2002;3(2):182-184.

Lartillot O, Toiviainen P. A Matlab toolbox for musical feature extraction from audio. In Proceedings of the 10th International Conference on Digital Audio Effects (DAFx-07), 2007;Bordeaux, France, 1-8.

Trimble M, Hesdorffer D. Music and the brain: the neuroscience of music and musical appreciation. BJPsych Int. 2017;14(2):28-31.

Blood AJ, Zatorre RJ. Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc Natl Acad Sci U S A. 2001;98:11818-11823.

Salimpoor VN, Benovoy M, Larcher K, Dagher A, Zatorre RJ. Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nat Neurosci. 2011;14(2):257-262.

Rektor I, Kuba R, Brázdil M, Chrastina J. Do the basal ganglia inhibit seizure activity in temporal lobe epilepsy? Epilepsy Behav. 2012;25(1):56-59.

Výtvarová E, Mareček R, Fousek J, Strýček O, Rektor I. Large-scale cortico-subcortical functional networks in focal epilepsies: the role of the basal ganglia. Neuroimage Clin. 2016;14:28-36.

O’Kelly J, James L, Palaniappan R, Taborin J, Fachner J, Magee WL. Neurophysiological and behavioral responses to music therapy in vegetative and minimally conscious States. Front Hum Neurosci. 2013;7:884.

Xing Y, Qin Y, Jing W, et al. Exposure to Mozart music reduces cognitive impairment in pilocarpine-induced status epilepticus rats. Cogn Neurodyn. 2016a;10(1):23-30.

Koelsch S. Towards a neural basis of music-evoked emotions. Trends Cogn Sci. 2010;14(3):131-137.

Khalfa S, Guye M, Peretz I, et al. Evidence of lateralized anteromedial temporal structures involvement in musical emotion processing. Neuropsychologia. 2008;46(10):2485-2493.

Altenmüller E, Siggel S, Mohammadi B, Samii MünteTF. Play it again, Sam: brain correlates of emotional music recognition. Front. Psychol. 2014;5:114. https://doi.org/10.3389/fpsyg.2014.00114

Xing Y, Xia Y, Kendrick K, et al. Mozart, Mozart rhythm and retrograde mozart effects: evidences from behaviours and neurobiology bases. Sci Rep. 2016b;6:18744.

Lin LC, Chiang CT, Lee MW, et al. Parasympathetic activation is involved in reducing epileptiform discharges when listening to Mozart music. Clin Neurophysiol. 2013;124(8):1528-1535.

Stewart L, von Kriegstein K, Warren JD, Griffiths TD. Music and the brain: disorders of musical listening. Brain. 2006;129(Pt 10):2533-2553.

Samson S, Ehrlé N, Baulac M. Cerebral substrates for musical temporal processes. Ann N Y Acad Sci. 2006;166-178.

Bianco R, Novembre G, Keller PE, et al. Neural networks for harmonic structure in music perception and action. NeuroImage. 2016;142:454-464.

Yaesoubi M, Miller RL, Adali T, Calhoun VD. Time-varying frequency modes of resting fMRI brain networks reveal significant gender differences. 2016:6310-6314. Shanghai, China. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). https://doi.org/10.1109/ICASSP.2016.7472891

Bodner M, Turner RP, Schwacke J, Bowers C, Norment C. Reduction of seizure occurrence from exposure to auditory stimulation in individuals with neurological handicaps: a randomized controlled trial. PLoS One. 2012;7(10):e45303.

Lin LC, Lee WT, Wu HC, et al. Mozart K.448 and epileptiform discharges: effect of ratio of lower to higher harmonics. Epilepsy Res. 2010;89(2-3):238-245.

Lin LC, Lee WT, Wang CH, et al. Mozart K448 acts as a potential add-on therapy in children with refractory epilepsy. Epilepsy Behav. 2011;20(3):490-493.

Coppola G, Toro A, Operto FF, et al. Mozart’s music in children with drug-refractory epileptic encephalopathies. Epilepsy Behav. 2015;50:18-22.

Lahiri N, Duncan JS. The Mozart effect: encore. Epilepsy Behav. 2007;11(1):152-153.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...