Genomic Insights Into the Lifestyles of Thaumarchaeota Inside Sponges
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33537022
PubMed Central
PMC7848895
DOI
10.3389/fmicb.2020.622824
Knihovny.cz E-zdroje
- Klíčová slova
- Hymedesmia (Stylopus) methanophila, Petrosia ficiformis, Theonella swinhoei, archaea, sponge (Porifera), symbiosis, thaumarchaeota,
- Publikační typ
- časopisecké články MeSH
Sponges are among the oldest metazoans and their success is partly due to their abundant and diverse microbial symbionts. They are one of the few animals that have Thaumarchaeota symbionts. Here we compare genomes of 11 Thaumarchaeota sponge symbionts, including three new genomes, to free-living ones. Like their free-living counterparts, sponge-associated Thaumarchaeota can oxidize ammonia, fix carbon, and produce several vitamins. Adaptions to life inside the sponge host include enrichment in transposases, toxin-antitoxin systems and restriction modifications systems, enrichments previously reported also from bacterial sponge symbionts. Most thaumarchaeal sponge symbionts lost the ability to synthesize rhamnose, which likely alters their cell surface and allows them to evade digestion by the host. All but one archaeal sponge symbiont encoded a high-affinity, branched-chain amino acid transporter system that was absent from the analyzed free-living thaumarchaeota suggesting a mixotrophic lifestyle for the sponge symbionts. Most of the other unique features found in sponge-associated Thaumarchaeota, were limited to only a few specific symbionts. These features included the presence of exopolyphosphatases and a glycine cleavage system found in the novel genomes. Thaumarchaeota have thus likely highly specific interactions with their sponge host, which is supported by the limited number of host sponge species to which each of these symbionts is restricted.
Israel Oceanographic and Limnological Research Institute Haifa Israel
School of Biological Sciences The University of Auckland Auckland New Zealand
Zobrazit více v PubMed
Adindla S., Inampudi K. K., Guruprasad K., Guruprasad L. (2004). Identification and analysis of novel tandem repeats in the cell surface proteins of Archaeal and Bacterial genomes using computational tools. Comp. Funct. Genomics 5 2–16. 10.1002/cfg.358 PubMed DOI PMC
Ahlgren N. A., Chen Y., Needham D. M., Parada A. E., Sachdeva R., Trinh V., et al. (2017). Genome and epigenome of a novel marine Thaumarchaeota strain suggest viral infection, phosphorothioation DNA modification and multiple restriction systems. Environ. Microbiol. 19 2434–2452. 10.1111/1462-2920.13768 PubMed DOI
Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. (1990). Basic local alignment search tool. J. Mol. Biol. 215 403–410. 10.1016/S0022-2836(05)80360-2 PubMed DOI
Anantharaman V., Aravind L. (2000). Cache – a signaling domain common to animal Ca2+-channel subunits and a class of prokaryotic chemotaxis receptors. Trends Biochem. Sci. 25 535–537. 10.1016/S0968-0004(00)01672-8 PubMed DOI
Aylward F. O., Santoro A. E. (2020). Heterotrophic Thaumarchaea with small genomes are widespread in the dark ocean. mSystems 5:e00415-20 10.1128/mSystems.00415-20 PubMed DOI PMC
Aziz R. K., Bartels D., Best A. A., DeJongh M., Disz T., Edwards R. A., et al. (2008). The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75. 10.1186/1471-2164-9-75 PubMed DOI PMC
Baker B. J., De Anda V., Seitz K. W., Dombrowski N., Santoro A. E., Lloyd K. G. (2020). Diversity, ecology and evolution of Archaea. Nat. Microbiol. 5 887–900. 10.1038/s41564-020-0715-z PubMed DOI
Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., et al. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19 455–477. 10.1089/cmb.2012.0021 PubMed DOI PMC
Bayer K., Schmitt S., Hentschel U. (2008). Physiology, phylogeny and in situ evidence for bacterial and archaeal nitrifiers in the marine sponge Aplysina aerophoba. Environ. Microbiol. 10 2942–2955. 10.1111/j.1462-2920.2008.01582.x PubMed DOI
Bayer K., Busch K., Kenchington E., Beazley L., Franzenburg S., Michels J., et al. (2020). Microbial strategies for survival in the glass sponge Vazella pourtalesii. mSystems 5:e00473-20. 10.1128/mSystems.00473-20 PubMed DOI PMC
Björk J. R., Astudillo-García C., Archie E., Montoya J. M. (2019). Vertical transmission of sponge microbiota is weak and inconsistent. Nat. Ecol. Evol. 3 1172–1183. 10.1101/425009 PubMed DOI PMC
Blanc G., Font B., Eichenberger D., Moreau C., Ricard-Blum S., Hulmes D. J. S., et al. (2007). Insights into How CUB Domains Can Exert Specific Functions while Sharing a Common Fold CONSERVED AND SPECIFIC FEATURES OF THE CUB1 DOMAIN CONTRIBUTE TO THE MOLECULAR BASIS OF PROCOLLAGEN C-PROTEINASE ENHANCER-1 ACTIVITY. J. Biol. Chem. 282 16924–16933. 10.1074/jbc.M701610200 PubMed DOI
Burgsdorf I., Erwin P. M., López-Legentil S., Cerrano C., Haber M., Frenk S., et al. (2014). Biogeography rather than association with cyanobacteria structures symbiotic microbial communities in the marine sponge Petrosia ficiformis. Front. Microbiol. 5:529. 10.3389/fmicb.2014.00529 PubMed DOI PMC
Burgsdorf I., Handley K. M., Bar-Shalom R., Erwin P. M., Steindler L. (2019). Life at home and on the roam: genomic adaptions reflect the dual lifestyle of an intracellular, facultative symbiont. mSystems 4:e00135-16. 10.1128/mSystems.00057-19 PubMed DOI PMC
Burgsdorf I., Slaby B. M., Handley K. M., Haber M., Blom J., Marshall C. W., et al. (2015). Lifestyle evolution in cyanobacterial symbionts of sponges. mBio 6:e00391-15. 10.1128/mBio.00391-15 PubMed DOI PMC
Carini P., Dupont C. L., Santoro A. E. (2018). Patterns of thaumarchaeal gene expression in culture and diverse marine environments. Environ. Microbiol. 20 2112–2124. 10.1111/1462-2920.14107 PubMed DOI
de Goeij J. M., van Oevelen D., Vermeij M. J. A., Osinga R., Middelburg J. J., de Goeij A. F. P. M., et al. (2013). Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342 108–110. 10.1126/science.1241981 PubMed DOI
Dekas A. E., Parada A. E., Mayali X., Fuhrman J. A., Wollard J., Weber P. K., et al. (2019). Characterizing chemoautotrophy and heterotrophy in marine Archaea and bacteria with single-cell multi-isotope NanoSIP. Front. Microbiol. 10:2682. 10.3389/fmicb.2019.02682 PubMed DOI PMC
Dick G. J., Andersson A. F., Baker B. J., Simmons S. L., Thomas B. C., Yelton A. P., et al. (2009). Community-wide analysis of microbial genome sequence signatures. Genome Biol. 10:R85. 10.1186/gb-2009-10-8-r85 PubMed DOI PMC
Doxey A. C., Kurtz D. A., Lynch M. D., Sauder L. A., Neufeld J. D. (2015). Aquatic metagenomes implicate Thaumarchaeota in global cobalamin production. ISME J. 9 461–471. 10.1038/ismej.2014.142 PubMed DOI PMC
Edgar R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26 2460–2461. 10.1093/bioinformatics/btq461 PubMed DOI
Engelberts J. P., Robbins S. J., de Goeij J. M., Aranda M., Bell S. C., Webster N. S. (2020). Characterization of a sponge microbiome using an integrative genome-centric approach. ISME J. 14 1100–1110. 10.1038/s41396-020-0591-9 PubMed DOI PMC
Erwin P. M., Thacker R. W. (2008). Phototrophic nutrition and symbiont diversity of two Caribbean sponge–cyanobacteria symbioses. Mar. Ecol. Prog. Ser. 362 139–147. 10.3354/meps07464 DOI
Fan L., Reynolds D., Liu M., Stark M., Kjelleberg S., Webster N. S., et al. (2012). Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts. Proc. Natl. Acad. Sci. U.S.A. 109 E1878–E1887. 10.1073/pnas.1203287109 PubMed DOI PMC
Feuda R., Dohrmann M., Pett W., Philippe H., Rota-Stabelli O., Lartillot N., et al. (2017). Improved modeling of compositional heterogeneity supports sponges as sister to all other animals. Curr. Biol. 27 3864–3870.e4. 10.1016/j.cub.2017.11.008 PubMed DOI
Finn R. D., Mistry J., Tate J., Coggill P., Heger A., Pollington J. E., et al. (2010). The Pfam protein families database. Nucleic Acids Res. 38 D211–D222. 10.1093/nar/gkp985 PubMed DOI PMC
Galperin M. Y., Makarova K. S., Wolf Y. I., Koonin E. V. (2015). Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 43, D261–D269. 10.1093/nar/gku1223 PubMed DOI PMC
Gao Z.-M., Wang Y., Tian R.-M., Wong Y. H., Batang Z. B., Al-Suwailem A. M., et al. (2014). Symbiotic adaptation drives genome streamlining of the cyanobacterial sponge symbiont “Candidatus Synechococcus spongiarum. mBio 5:e00079-14. 10.1128/mBio.00079-14 PubMed DOI PMC
Gauthier M.-E. A., Watson J. R., Degnan S. M. (2016). Draft genomes shed light on the dual bacterial symbiosis that dominates the microbiome of the coral reef sponge Amphimedon queenslandica. Front. Mar. Sci. 3:196 10.3389/fmars.2016.00196 DOI
Gerke V., Moss S. E. (1997). Annexins and membrane dynamics. Biochim. Biophys. Acta 1357 129–154. 10.1016/S0167-4889(97)00038-4 PubMed DOI
Gloeckner V., Wehrl M., Moitinho-Silva L., Gernert C., Schupp P., Pawlik J. R., et al. (2014). The HMA-LMA dichotomy revisited: an electron microscopical survey of 56 sponge species. Biol. Bull. 227 78–88. 10.1086/BBLv227n1p78 PubMed DOI
Hadas E., Marie D., Shpigel M., Ilan M. (2006). Virus predation by sponges is a new nutrient-flow pathway in coral reef food webs. Limnol. Oceanogr. 51 1548–1550. 10.4319/lo.2006.51.3.1548 DOI
Hallam S. J., Konstantinidis K. T., Putnam N., Schleper C., Watanabe Y., Sugahara J., et al. (2006). Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum. Proc. Natl. Acad. Sci. U.S.A. 103 18296–18301. 10.1073/pnas.0608549103 PubMed DOI PMC
Handley K. M., VerBerkmoes N. C., Steefel C. I., Williams K. H., Sharon I., Miller C. S., et al. (2013). Biostimulation induces syntrophic interactions that impact C, S and N cycling in a sediment microbial community. ISME J. 7 800–816. 10.1038/ismej.2012.148 PubMed DOI PMC
Heal K. R., Qin W., Ribalet F., Bertagnolli A. D., Coyote-Maestas W., Hmelo L. R., et al. (2017). Two distinct pools of B12 analogs reveal community interdependencies in the ocean. Proc. Natl. Acad. Sci. U.S.A. 114 364–369. 10.1073/pnas.1608462114 PubMed DOI PMC
Hentschel U., Piel J., Degnan S. M., Taylor M. W. (2012). Genomic insights into the marine sponge microbiome. Nat. Rev. Microbiol. 10 641–654. 10.1038/nrmicro2839 PubMed DOI
Herndl G. J., Reinthaler T., Teira E., van Aken H., Veth C., Pernthaler A., et al. (2005). Contribution of Archaea to total prokaryotic production in the deep atlantic ocean. AEM 71 2303–2309. 10.1128/AEM.71.5.2303-2309.2005 PubMed DOI PMC
Hoffmann F., Radax R., Woebken D., Holtappels M., Lavik G., Rapp H. T., et al. (2009). Complex nitrogen cycling in the sponge Geodia barretti. Environ. Microbiol. 11 2228–2243. 10.1111/j.1462-2920.2009.01944.x PubMed DOI
Horn H., Slaby B. M., Jahn M. T., Bayer K., Moitinho-Silva L., Förster F., et al. (2016). An enrichment of CRISPR and other defense-related features in marine sponge-associated microbial Metagenomes. Front. Microbiol. 7:1751. 10.3389/fmicb.2016.01751 PubMed DOI PMC
Hosie A. H. F., Allaway D., Galloway C. S., Dunsby H. A., Poole P. S. (2002). Rhizobium leguminosarum has a second general amino acid permease with unusually broad substrate specificity and high similarity to branched-chain amino acid transporters (Bra/LIV) of the ABC family. J. Bacteriol. 184 4071–4080. 10.1128/JB.184.15.4071-4080.2002 PubMed DOI PMC
Hyatt D., Chen G.-L., LoCascio P. F., Land M. L., Larimer F. W., Hauser L. J. (2010). Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119. 10.1186/1471-2105-11-119 PubMed DOI PMC
Hyatt D., LoCascio P. F., Hauser L. J., Uberbacher E. C. (2012). Gene and translation initiation site prediction in metagenomic sequences. Bioinformatics 28 2223–2230. 10.1093/bioinformatics/bts429 PubMed DOI
Ivanov D., Emonet C., Foata F., Affolter M., Delley M., Fisseha M., et al. (2006). A serpin from the gut bacterium Bifidobacterium longum inhibits eukaryotic elastase-like serine proteases. J. Biol. Chem. 281 17246–17252. 10.1074/jbc.M601678200 PubMed DOI
Iwaki D., Kanno K., Takahashi M., Endo Y., Matsushita M., Fujita T. (2011). The role of mannose-binding lectin-associated serine protease-3 in activation of the alternative complement pathway. J. Immunol. 187 3751–3758. 10.4049/jimmunol.1100280 PubMed DOI
Jahn M. T., Arkhipova K., Markert S. M., Stigloher C., Lachnit T., Pita L., et al. (2019). A phage protein aids bacterial symbionts in eukaryote immune evasion. Cell Host Microbe 26 542–550.e5. 10.1016/j.chom.2019.08.019 PubMed DOI
Jiménez E., Ribes M. (2007). Sponges as a source of dissolved inorganic nitrogen: nitrification mediated by temperate sponges. Limnol. Oceanogr. 52 948–958. 10.4319/lo.2007.52.3.0948 DOI
Karimi E., Slaby B. M., Soares A. R., Blom J., Hentschel U., Costa R. (2018). Metagenomic binning reveals versatile nutrient cycling and distinct adaptive features in alphaproteobacterial symbionts of marine sponges. FEMS Microbiol. Ecol. 94:fiy074. 10.1093/femsec/fiy074 PubMed DOI
Kellner S., Spang A., Offre P., Szöllősi G. J., Petitjean C., Williams T. A. (2018). Genome size evolution in the Archaea. Emerg. Top. Life Sci. 2 595–605. 10.1042/ETLS20180021 PubMed DOI PMC
Kirchman D. L., Elifantz H., Dittel A. I., Malmstrom R. R., Cottrell M. T. (2007). Standing stocks and activity of Archaea and Bacteria in the western Arctic Ocean. Limnol. Oceanogr. 52 495–507. 10.4319/lo.2007.52.2.0495 DOI
Könneke M., Schubert D. M., Brown P. C., Hügler M., Standfest S., Schwander T., et al. (2014). Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation. Proc. Natl. Acad. Sci. U.S.A. 111 8239–8244. 10.1073/pnas.1402028111 PubMed DOI PMC
Krom M. D., Kress N., Brenner S., Gordon L. I. (1991). Phosphorus limitation of primary productivity in the eastern Mediterranean Sea. Limnol. Oceanogr. 36 424–432. 10.4319/lo.1991.36.3.0424 DOI
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35 1547–1549. 10.1093/molbev/msy096 PubMed DOI PMC
León-Zayas R., Novotny M., Podell S., Shepard C. M., Berkenpas E., Nikolenko S., et al. (2015). Single cells within the puerto rico trench suggest Hadal adaptation of microbial lineages. Appl. Environ. Microbiol. 81 8265–8276. 10.1128/AEM.0165915 PubMed DOI PMC
Letunic I., Bork P. (2019). Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47 W256–W259. 10.1093/nar/gkz239 PubMed DOI PMC
Li Z., Song Q., Wang Y., Xiao X., Xu J. (2018). Identification of a functional toxin–antitoxin system located in the genomic island PYG1 of piezophilic hyperthermophilic archaeon Pyrococcus yayanosii. Extremophiles 22 347–357. 10.1007/s00792-018-1002-2 PubMed DOI
Liu M., Fan L., Zhong L., Kjelleberg S., Thomas T. (2012). Metaproteogenomic analysis of a community of sponge symbionts. ISME J. 6 1515–1525. 10.1038/ismej.2012.1 PubMed DOI PMC
López-Legentil S., Erwin P. M., Pawlik J. R., Song B. (2010). Effects of sponge bleaching on ammonia-oxidizing archaea: distribution and relative expression of ammonia monooxygenase genes associated with the barrel sponge Xestospongia muta. Microb. Ecol. 60 561–571. 10.1007/s00248-010-9662-1 PubMed DOI
Lurin C., Andrés C., Aubourg S., Bellaoui M., Bitton F., Bruyère C., et al. (2004). Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16 2089–2103. 10.1105/tpc.104.022236 PubMed DOI PMC
Makarova K. S., Wolf Y. I., Snir S., Koonin E. V. (2011). Defense islands in bacterial and archaeal genomes and prediction of novel defense systems. J. Bacteriol. 193 6039–6056. 10.1128/JB.05535-11 PubMed DOI PMC
Maldonado M., Riesgo A. (2009). Gametogenesis, embryogenesis, and larval features of the oviparous sponge Petrosia ficiformis (Haplosclerida, Demospongiae). Mar. Biol. 156 2181–2197. 10.1007/s00227-009-1248-4 DOI
Markowitz V. M., Chen I.-M. A., Palaniappan K., Chu K., Szeto E., Grechkin Y., et al. (2012). IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res. 40 D115–D122. 10.1093/nar/gkr1044 PubMed DOI PMC
Miller C. S., Baker B. J., Thomas B. C., Singer S. W., Banfield J. F. (2011). EMIRGE: reconstruction of full-length ribosomal genes from microbial community short read sequencing data. Genome Biol. 12:R44. 10.1186/gb-2011-12-5-r44 PubMed DOI PMC
Moeller F. U., Webster N. S., Herbold C. W., Behnam F., Domman D., Albertsen M., et al. (2019). Characterization of a thaumarchaeal symbiont that drives incomplete nitrification in the tropical sponge Ianthella basta. Environ. Microbiol. 21 3831–3854. 10.1111/1462-2920.14732 PubMed DOI PMC
Mohamed N. M., Colman A. S., Tal Y., Hill R. T. (2008). Diversity and expression of nitrogen fixation genes in bacterial symbionts of marine sponges. Environ. Microbiol. 10 2910–2921. 10.1111/j.1462-2920.2008.01704.x PubMed DOI
Moitinho-Silva L., Díez-Vives C., Batani G., Esteves A. I., Jahn M. T., Thomas T. (2017a). Integrated metabolism in sponge–microbe symbiosis revealed by genome-centered metatranscriptomics. ISME J. 11 1651–1666. 10.1038/ismej.2017.25 PubMed DOI PMC
Moitinho-Silva L., Nielsen S., Amir A., Gonzalez A., Ackermann G. L., Cerrano C., et al. (2017b). The sponge microbiome project. Gigascience 6:gix077. 10.1093/gigascience/gix077 PubMed DOI PMC
Mori T., Cahn J. K. B., Wilson M. C., Meoded R. A., Wiebach V., Martinez A. F. C., et al. (2018). Single-bacterial genomics validates rich and varied specialized metabolism of uncultivated Entotheonella sponge symbionts. Proc. Natl. Acad. Sci. U.S.A. 115 1718–1723. 10.1073/pnas.1715496115 PubMed DOI PMC
Morley S. A., Berman J., Barnes D. K. A., de Juan Carbonell C., Downey R. V., Peck L. S. (2016). Extreme phenotypic plasticity in metabolic physiology of Antarctic Demosponges. Front. Ecol. Evol. 3:157 10.3389/fevo.2015.00157 DOI
Morrow C. C., Picton B. E., Erpenbeck D., Boury-Esnault N., Maggs C. A., Allcock A. L. (2012). Congruence between nuclear and mitochondrial genes in Demospongiae: a new hypothesis for relationships within the G4 clade (Porifera: Demospongiae). Mol. Phylogenet. Evol. 62 174–190. 10.1016/j.ympev.2011.09.016 PubMed DOI
Moya A., Peretó J., Gil R., Latorre A. (2008). Learning how to live together: genomic insights into prokaryote–animal symbioses. Nat. Rev. Genet. 9 218–229. 10.1038/nrg2319 PubMed DOI
Nguyen M. T. H. D., Liu M., Thomas T. (2014). Ankyrin-repeat proteins from sponge symbionts modulate amoebal phagocytosis. Mol. Ecol. 23 1635–1645. 10.1111/mec.12384 PubMed DOI
Offre P., Kerou M., Spang A., Schleper C. (2014). Variability of the transporter gene complement in ammonia-oxidizing archaea. Trends Microbiol. 22 665–675. 10.1016/j.tim.2014.07.007 PubMed DOI
Ouverney C. C., Fuhrman J. A. (2000). Marine planktonic Archaea take up amino acids. Appl. Environ. Microbiol. 66 4829–4833. 10.1128/AEM.66.11.4829-4833.2000 PubMed DOI PMC
Overbeek R., Olson R., Pusch G. D., Olsen G. J., Davis J. J., Disz T., et al. (2014). The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res. 42 D206–D214. 10.1093/nar/gkt1226 PubMed DOI PMC
Park S.-J., Ghai R., Martín-Cuadrado A.-B., Rodríguez-Valera F., Chung W.-H., Kwon K., et al. (2014). Genomes of two new ammonia-oxidizing Archaea enriched from deep marine sediments. PLoS One 9:e96449. 10.1371/journal.pone.0096449 PubMed DOI PMC
Parks D. H., Chuvochina M., Waite D. W., Rinke C., Skarshewski A., Chaumeil P.-A., et al. (2018). A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36 996–1004. 10.1038/nbt.4229 PubMed DOI
Parks D. H., Imelfort M., Skennerton C. T., Hugenholtz P., Tyson G. W. (2015). CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25 1043–1055. 10.1101/gr.186072.114 PubMed DOI PMC
Parks D. H., Tyson G. W., Hugenholtz P., Beiko R. G. (2014). STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30 3123–3124. 10.1093/bioinformatics/btu494 PubMed DOI PMC
Peng Y., Leung H. C. M., Yiu S. M., Chin F. Y. L. (2012). IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28 1420–1428. 10.1093/bioinformatics/bts174 PubMed DOI
Pester M., Schleper C., Wagner M. (2011). The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Curr. Opin. Microbiol. 14 300–306. 10.1016/j.mib.2011.04.007 PubMed DOI PMC
Pita L., Rix L., Slaby B. M., Franke A., Hentschel U. (2018). The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome 6:46. 10.1186/s40168-018-0428-1 PubMed DOI PMC
Podell S., Blanton J. M., Neu A., Agarwal V., Biggs J. S., Moore B. S., et al. (2019). Pangenomic comparison of globally distributed Poribacteria associated with sponge hosts and marine particles. ISME J. 13 468–481. 10.1038/s41396-018-0292-9 PubMed DOI PMC
Preston C. M., Wu K. Y., Molinski T. F., DeLong E. F. (1996). A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov. Proc. Natl. Acad. Sci. U.S.A. 93 6241–6246. 10.1073/pnas.93.13.6241 PubMed DOI PMC
Pruesse E., Peplies J., Glöckner F. O. (2012). SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28 1823–1829. 10.1093/bioinformatics/bts252 PubMed DOI PMC
Puigbò P., Wolf Y. I., Koonin E. V. (2009). Search for a “Tree of Life” in the thicket of the phylogenetic forest. J. Biol. 8:59. 10.1186/jbiol159 PubMed DOI PMC
Radax R., Hoffmann F., Rapp H. T., Leininger S., Schleper C. (2012a). Ammonia-oxidizing archaea as main drivers of nitrification in cold-water sponges: Archaeal nitrification in cold-water sponges. Environ. Microbiol. 14 909–923. 10.1111/j.1462-2920.2011.02661.x PubMed DOI
Radax R., Rattei T., Lanzen A., Bayer C., Rapp H. T., Urich T., et al. (2012b). Metatranscriptomics of the marine sponge Geodia barretti: tackling phylogeny and function of its microbial community. Environ. Microbiol. 14 1308–1324. 10.1111/j.1462-2920.2012.02714.x PubMed DOI
Reichenberger E. R., Rosen G., Hershberg U., Hershberg R. (2015). Prokaryotic nucleotide composition is shaped by both phylogeny and the environment. Genome Biol. Evol. 7, 1380–1389. 10.1093/gbe/evv063 PubMed DOI PMC
Reynolds D., Thomas T. (2016). Evolution and function of eukaryotic-like proteins from sponge symbionts. Mol. Ecol. 25 5242–5253. 10.1111/mec.13812 PubMed DOI
Riesgo A., Farrar N., Windsor P. J., Giribet G., Leys S. P. (2014). The analysis of eight transcriptomes from all poriferan classes reveals surprising genetic complexity in sponges. Mol. Biol. Evol. 31 1102–1120. 10.1093/molbev/msu057 PubMed DOI
Rodrigues-Oliveira T., Belmok A., Vasconcellos D., Schuster B., Kyaw C. M. (2017). Archaeal S-layers: overview and current state of the art. Front. Microbiol. 8:2597. 10.3389/fmicb.2017.02597 PubMed DOI PMC
Rohrer S., Berger-Bächi B. (2003). FemABX peptidyl transferases: a link between branched-chain cell wall peptide formation and β-Lactam resistance in gram-positive Cocci. Antimicrob. Agents Chemother. 47 837–846. 10.1128/AAC.47.3.837-846.2003 PubMed DOI PMC
Rubin-Blum M., Antony C. P., Sayavedra L., Martínez-Pérez C., Birgel D., Peckmann J., et al. (2019). Fueled by methane: deep-sea sponges from asphalt seeps gain their nutrition from methane-oxidizing symbionts. ISME J. 13 1209–1225. 10.1038/s41396-019-0346-7 PubMed DOI PMC
Sahling H., Borowski C., Escobar-Briones E., Gaytán-Caballero A., Hsu C.-W., Loher M., et al. (2016). Massive asphalt deposits, oil seepage, and gas venting support abundant chemosynthetic communities at the Campeche Knolls, southern Gulf of Mexico. Biogeosciences 13 4491–4512. 10.5194/bg-13-4491-2016 DOI
Schäffer C., Messner P. (2004). Surface-layer glycoproteins: an example for the diversity of bacterial glycosylation with promising impacts on nanobiotechnology. Glycobiology 14 31R–42R. 10.1093/glycob/cwh064 PubMed DOI
Seah B. K. B., Gruber-Vodicka H. R. (2015). gbtools: interactive visualization of Metagenome Bins in R. Front. Microbiol. 6:1451. 10.3389/fmicb.2015.01451 PubMed DOI PMC
Segata N., Börnigen D., Morgan X. C., Huttenhower C. (2013). PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat. Commun. 4:2304. 10.1038/ncomms3304 PubMed DOI PMC
Selvaraj S. K., Periandythevar P., Prasadarao N. V. (2007). Outer membrane protein A of Escherichia coli K1 selectively enhances the expression of intercellular adhesion molecule-1 in brain microvascular endothelial cells. Microbes Infect. 9 547–557. 10.1016/j.micinf.2007.01.020 PubMed DOI PMC
Siegl A., Kamke J., Hochmuth T., Piel J., Richter M., Liang C., et al. (2011). Single-cell genomics reveals the lifestyle of Poribacteria, a candidate phylum symbiotically associated with marine sponges. ISME J. 5 61–70. 10.1038/ismej.2010.95 PubMed DOI PMC
Simister R. L., Deines P., Botté E. S., Webster N. S., Taylor M. W. (2012). Sponge-specific clusters revisited: a comprehensive phylogeny of sponge-associated microorganisms. Environ. Microbiol. 14 517–524. 10.1111/j.1462-2920.2011.02664.x PubMed DOI
Sipkema D., Caralt S., Morillo J. A., Al-Soud W. A., Sorensen S. J., Smidt H., et al. (2015). Similar sponge-associated bacteria can be acquired via both vertical and horizontal transmission. Environ. Microbiol. 17, 3807–3821. 10.1111/1462-2920.12827 PubMed DOI
Sizikov S., Burgsdorf I., Handley K. M., Lahyani M., Haber M., Steindler L. (2020). Characterization of sponge-associated Verrucomicrobia: microcompartment-based sugar utilization and enhanced toxin–antitoxin modules as features of host-associated Opitutales. Environ. Microbiol. 22 4669–4688. 10.1111/1462-2920.15210 PubMed DOI
Slaby B. M., Hackl T., Horn H., Bayer K., Hentschel U. (2017). Metagenomic binning of a marine sponge microbiome reveals unity in defense but metabolic specialization. ISME J. 11 2465–2478. 10.1038/ismej.2017.101 PubMed DOI PMC
Stamatakis A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30 1312–1313. 10.1093/bioinformatics/btu033 PubMed DOI PMC
Staub E., Pérez-Tur J., Siebert R., Nobile C., Moschonas N. K., Deloukas P., et al. (2002). The novel EPTP repeat defines a superfamily of proteins implicated in epileptic disorders. Trends Biochem. Sci. 27 441–444. 10.1016/S0968-0004(02)02163-1 PubMed DOI
Steger D., Ettinger-Epstein P., Whalan S., Hentschel U., de Nys R., Wagner M., et al. (2008). Diversity and mode of transmission of ammonia-oxidizing archaea in marine sponges. Environ. Microbiol. 10 1087–1094. 10.1111/j.1462-2920.2007.01515.x PubMed DOI
Steinert G., Busch K., Bayer K., Kodami S., Arbizu P. M., Kelly M., et al. (2020). Compositional and quantitative insights into bacterial and Archaeal communities of south pacific deep-sea sponges (Demospongiae and Hexactinellida). Front. Microbiol. 11:716. 10.3389/fmicb.2020.00716 PubMed DOI PMC
Suzek B. E., Huang H., McGarvey P., Mazumder R., Wu C. H. (2007). UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics 23 1282–1288. 10.1093/bioinformatics/btm098 PubMed DOI
Tatusov R. L., Fedorova N. D., Jackson J. D., Jacobs A. R., Kiryutin B., Koonin E. V., et al. (2003). The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4:41. 10.1186/1471-2105-4-41 PubMed DOI PMC
Taylor M. W., Thacker R. W., Hentschel U. (2007). Evolutionary insights from sponges. Science 316 1854–1855. 10.1126/science.1144387 PubMed DOI
Taylor M. W., Tsai P., Simister R. L., Deines P., Botte E., Ericson G., et al. (2013). ‘Sponge-specific’ bacteria are widespread (but rare) in diverse marine environments. ISME J. 7 438–443. 10.1038/ismej.2012.111 PubMed DOI PMC
Thomas T., Moitinho-Silva L., Lurgi M., Björk J. R., Easson C., Astudillo-García C., et al. (2016). Diversity, structure and convergent evolution of the global sponge microbiome. Nat. Commun. 7:11870. 10.1038/ncomms11870 PubMed DOI PMC
Thomas T., Rusch D., DeMaere M. Z., Yung P. Y., Lewis M., Halpern A., et al. (2010). Functional genomic signatures of sponge bacteria reveal unique and shared features of symbiosis. ISME J. 4 1557–1567. 10.1038/ismej.2010.74 PubMed DOI
Tian R.-M., Sun J., Cai L., Zhang W.-P., Zhou G.-W., Qiu J.-W., et al. (2016). The deep-sea glass sponge Lophophysema eversa harbours potential symbionts responsible for the nutrient conversions of carbon, nitrogen and sulfur. Environ. Microbiol. 18 2481–2494. 10.1111/1462-2920.13161 PubMed DOI
Tian R.-M., Zhang W., Cai L., Wong Y.-H., Ding W., Qian P.-Y. (2017). Genome reduction and microbe-host interactions drive adaptation of a sulfur-oxidizing bacterium associated with a cold seep sponge. mSystems 2:e00184-16. 10.1128/mSystems.00184-16 PubMed DOI PMC
Uriz M. J., Agell G., Blanquer A., Turon X., Casamayor E. O. (2012). Endosymbiotic calcifying bacteria: A new cue to the origin of calcification in Metazoa? Evolution 66 2993–2999. 10.1111/j.1558-5646.2012.01676.x PubMed DOI PMC
Vacelet J., Donadey C. (1977). Electron microscope study of the association between some sponges and bacteria. J. Exp. Mar. Biol. Ecol. 30 301–314. 10.1016/0022-0981(77)90038-7 DOI
Van Soest R. W. M., Boury-Esnault N., Vacelet J., Dohrmann M., Erpenbeck D., De Voogd N. J., et al. (2012). Global diversity of sponges (Porifera). PLoS One 7:e0035105. 10.1371/journal.pone.0035105 PubMed DOI PMC
Veyron S., Peyroche G., Cherfils J. (2018). FIC proteins: from bacteria to humans and back again. Pathog. Dis. 76:fty012. 10.1093/femspd/fty012 PubMed DOI
Wang Y., Huang J.-M., Cui G.-J., Nunoura T., Takaki Y., Li W.-L., et al. (2019). Genomics insights into ecotype formation of ammonia-oxidizing archaea in the deep ocean. Environ. Microbiol. 21 716–729. 10.1111/1462-2920.14518 PubMed DOI
Waters A. L., Peraud O., Kasanah N., Sims J. W., Kothalawala N., Anderson M. A., et al. (2014). An analysis of the sponge Acanthostrongylophora igens’ microbiome yields an actinomycete that produces the natural product manzamine A. Front. Mar. Sci. 1:54. 10.3389/fmars.2014.00054 PubMed DOI PMC
Wu S., Zhu Z., Fu L., Niu B., Li W. (2011). WebMGA: a customizable web server for fast metagenomic sequence analysis. BMC Genomics 12:444. 10.1186/1471-2164-12-444 PubMed DOI PMC
Xiong L., Liu S., Chen S., Xiao Y., Zhu B., Gao Y., et al. (2019). A new type of DNA phosphorothioation-based antiviral system in archaea. Nat. Commun. 10:1688. 10.1038/s41467-019-09390-9 PubMed DOI PMC
Yahel G., Sharp J. H., Marie D., Häse C., Genin A. (2003). In situ feeding and element removal in the symbiont-bearing sponge Theonella swinhoei: bulk DOC is the major source for carbon. Limnol. Oceanogr. 48 141–149. 10.4319/lo.2003.48.1.0141 DOI
Zhang F., Blasiak L. C., Karolin J. O., Powell R. J., Geddes C. D., Hill R. T. (2015). Phosphorus sequestration in the form of polyphosphate by microbial symbionts in marine sponges. Proc. Natl. Acad. Sci. U.S.A. 112 4381–4386. 10.1073/pnas.1423768112 PubMed DOI PMC
Zhang F., Pita L., Erwin P. M., Abaid S., López-Legentil S., Hill R. T. (2014). Symbiotic archaea in marine sponges show stability and host specificity in community structure and ammonia oxidation functionality. FEMS Microbiol. Ecol. 90 699–707. 10.1111/1574-6941.12427 PubMed DOI
Zhang S., Song W., Wemheuer B., Reveillaud J., Webster N., Thomas T. (2019). Comparative genomics reveals ecological and evolutionary insights into sponge-associated Thaumarchaeota. mSystems 4:e00288-19. 10.1128/mSystems.00288-19 PubMed DOI PMC
Zhong H., Lehtovirta-Morley L., Liu J., Zheng Y., Lin H., Song D., et al. (2020). Novel insights into the Thaumarchaeota in the deepest oceans: their metabolism and potential adaptation mechanisms. Microbiome 8:78. 10.1186/s40168-020-00849-2 PubMed DOI PMC