Phosphofructokinases A and B from Mycobacterium tuberculosis Display Different Catalytic Properties and Allosteric Regulation

. 2021 Feb 02 ; 22 (3) : . [epub] 20210202

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu srovnávací studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33540748

Grantová podpora
CZ.02.1.01/0.0/16_019/000729 Ministerstvo Školství, Mládeže a Tělovýchovy
RVO 61388963 Akademie Věd České Republiky

Tuberculosis (TB) remains one of the major health concerns worldwide. Mycobacterium tuberculosis (Mtb), the causative agent of TB, can flexibly change its metabolic processes during different life stages. Regulation of key metabolic enzyme activities by intracellular conditions, allosteric inhibition or feedback control can effectively contribute to Mtb survival under different conditions. Phosphofructokinase (Pfk) is one of the key enzymes regulating glycolysis. Mtb encodes two Pfk isoenzymes, Pfk A/Rv3010c and Pfk B/Rv2029c, which are differently expressed upon transition to the hypoxia-induced non-replicating state of the bacteria. While pfkB gene and protein expression are upregulated under hypoxic conditions, Pfk A levels decrease. Here, we present biochemical characterization of both Pfk isoenzymes, revealing that Pfk A and Pfk B display different kinetic properties. Although the glycolytic activity of Pfk A is higher than that of Pfk B, it is markedly inhibited by an excess of both substrates (fructose-6-phosphate and ATP), reaction products (fructose-1,6-bisphosphate and ADP) and common metabolic allosteric regulators. In contrast, synthesis of fructose-1,6-bisphosphatase catalyzed by Pfk B is not regulated by higher levels of substrates, and metabolites. Importantly, we found that only Pfk B can catalyze the reverse gluconeogenic reaction. Pfk B thus can support glycolysis under conditions inhibiting Pfk A function.

Zobrazit více v PubMed

Global Tuberculosis Report 2020. World Health Organization; Geneva, Switzerland: 2020.

Sharma S.K., Mohan A., Kadhiravan T. HIV-TB co-infection: Epidemiology, diagnosis&management. Indian J. Med. Res. 2005;121:550–567. PubMed

Pizzol D., Di Gennaro F., Chhaganlal K.D., Fabrizio C., Monno L., Putoto G., Saracino A. Prevalence of diabetes mellitus in newly diagnosed pulmonary tuberculosis in Beira, Mozambique. Afr. Health Sci. 2017;17:773–779. doi: 10.4314/ahs.v17i3.20. PubMed DOI PMC

Di Gennaro F., Vittozzi P., Gualano G., Musso M., Mosti S., Mencarini P., Pareo C., Di Caro A., Schininà V., Girardi E., et al. Active Pulmonary Tuberculosis in Elderly Patients: A 2016–2019 Retrospective Analysis from an Italian Referral Hospital. Antibiotics. 2020;9:489. doi: 10.3390/antibiotics9080489. PubMed DOI PMC

de Carvalho L.P.S., Fischer S.M., Marrero J., Nathan C., Ehrt S., Rhee K.Y. Metabolomics of Mycobacterium tuberculosis reveals compartmentalized co-catabolism of carbon substrates. Chem. Biol. 2010;17:1122–1131. doi: 10.1016/j.chembiol.2010.08.009. PubMed DOI

Ehrt S., Schnappinger D., Rhee K.Y. Metabolic principles of persistence and pathogenicity in Mycobacterium tuberculosis. Nat. Rev. Microbiol. 2018;16:496–507. doi: 10.1038/s41579-018-0013-4. PubMed DOI PMC

Jayanthi B., Ramachandra P., Suryanarayana M., Venkitasubramanian T. Pathways of carbohydrate metabolism in Mycobacterium tuberculosis H37Rv1. Can. J. Microbiol. 1975;21:1688–1691. doi: 10.1139/m75-247. PubMed DOI

Voskuil M.I., Schnappinger D., Visconti K.C., Harrell M.I., Dolganov G.M., Sherman D.R., Schoolnik G.K. Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J. Exp. Med. 2003;198:705–713. doi: 10.1084/jem.20030205. PubMed DOI PMC

Shi L., Sohaskey C.D., Pfeiffer C., Datta P., Parks M., McFadden J., North R.J., Gennaro M.L. Carbon flux rerouting during Mycobacterium tuberculosis growth arrest. Mol. Microbiol. 2010;78:1199–1215. doi: 10.1111/j.1365-2958.2010.07399.x. PubMed DOI PMC

Schubert O.T., Ludwig C., Kogadeeva M., Zimmermann M., Rosenberger G., Gengenbacher M., Gillet L.C., Collins B.C., Röst H.L., Kaufmann S.H.E., et al. Absolute proteome composition and dynamics during dormancy and resuscitation of Mycobacterium tuberculosis. Cell Host Microbe. 2015;18:96–108. doi: 10.1016/j.chom.2015.06.001. PubMed DOI

Cabrera R., Ambrosio A.L.B., Garratt R.C., Guixé V., Babul J. Crystallographic structure of phosphofructokinase-2 from Escherichia coli in complex with two ATP molecules. Implications for substrate inhibition. J. Mol. Biol. 2008;383:588–602. doi: 10.1016/j.jmb.2008.08.029. PubMed DOI

Shirakihara Y., Evans P.R. Crystal structure of the complex of phosphofructokinase from Escherichia coli with its reaction products. J. Mol. Biol. 1988;204:973–994. doi: 10.1016/0022-2836(88)90056-3. PubMed DOI

Ganapathy U., Marrero J., Calhoun S., Eoh H., Sorio de Carvalho L.P., Rhee K., Ehrt S. Two enzymes with redundant fructose bisphosphatase activity sustain gluconeogenesis and virulence in Mycobacterium tuberculosis. Nat. Commun. 2015;6:7912. doi: 10.1038/ncomms8912. PubMed DOI PMC

Hellinga H.W., Evans P.R. Mutations in the active site of Escherichia coli phosphofructokinase. Nature. 1987;327:437–439. doi: 10.1038/327437a0. PubMed DOI

Byrnes M., Zhu X., Younathan E.S., Chang S.H. Kinetic characteristics of phosphofructokinase from Bacillus stearothermophilus: MgATP nonallosterically inhibits the enzyme. Biochemistry. 1994;33:3424–3431. doi: 10.1021/bi00177a036. PubMed DOI

McKinney J.D., Höner zu Bentrup K., Muñoz-Elías E.J., Miczak A., Chen B., Chan W.T., Swenson D., Sacchettini J.C., Jacobs W.R., Russell D. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature. 2000;406:735–738. doi: 10.1038/35021074. PubMed DOI

Marrero J., Rhee K.Y., Schnappinger D., Pethe K., Ehrt S. Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection. Proc. Natl. Acad. Sci. USA. 2010;107:9819–9824. doi: 10.1073/pnas.1000715107. PubMed DOI PMC

Boshoff H.I., Barry C.E. Tuberculosis-metabolism and respiration in the absence of growth. Nat. Rev. Microbiol. 2005;3:70–80. doi: 10.1038/nrmicro1065. PubMed DOI

Phong W.Y., Lin W., Rao S.P.S., Dick T., Alonso S., Pethe K. Characterization of phosphofructokinase activity in Mycobacterium tuberculosis reveals that a functional glycolytic carbon flow is necessary to limit the accumulation of toxic metabolic intermediates under hypoxia. PLoS ONE. 2013;8:e56037. doi: 10.1371/annotation/7197763f-327f-4d6c-89fd-fba317e52c18. PubMed DOI PMC

Uyeda K., Furuya E., Sherry D. The Structure of “Activation Factor” for Phosphofructokinase. J. Biol. Chem. 1981;256:8679–8684. doi: 10.1016/S0021-9258(19)68897-6. PubMed DOI

Arts E., Kubicek C.P., Rohr M. Regulation of phosphofructokinase from Aspergillus niger: Effect of fructose-2,6-bisphosphate on the action of citrate, ammonium ions and AMP. J. Gen. Microbiol. 1987;133:1195–1199. doi: 10.1099/00221287-133-5-1195. DOI

Berg J.M., Tymoczko J.L., Stryer L. The Glycolytic Pathway Is Tightly Controlled. In: Freeman W.H., editor. Biochemistry. 5th ed. Publisher; New York, NY, USA: 2002. [(accessed on 20 January 2021)]. Section 16.2. Available online: https://www.ncbi.nlm.nih.gov/books/NBK22395/

Mertens E., van Schaftingen E., Muller M. Presence of a fructose-2,6-bisphosphate-insensitive pyrophosphate: Fructose-6-phosphate phosphotransferase in the anaerobic protozoa Trichomonas foetus, Trichomonas vaginalis and Isotricha prostoma. Mol. Biochem. Parasitol. 1989;37:183–190. doi: 10.1016/0166-6851(89)90150-3. PubMed DOI

Reshetnikov A.S., Rozova O.N., Khmelenina V.N., Mustakhimov I.I., Beschastny A.P., Murrell J.C., Trotsenko Y.A. Characterization of the pyrophosphate-dependent 6-phosphofructokinase from Methylococcus capsulatus Bath. FEMS Microbiol. Lett. 2008;288:202–210. doi: 10.1111/j.1574-6968.2008.01366.x. PubMed DOI

Machová I., Snášel J., Zimmermann M., Laubitz D., Plocinski P., Oehlmann W., Singh M., Dostál J., Sauer U., Pichová I. Mycobacterium tuberculosis phosphoenolpyruvate carboxykinase is regulated by redox mechanisms and interaction with thioredoxin. J. Biol. Chem. 2014;289:13066–13078. doi: 10.1074/jbc.M113.536748. PubMed DOI PMC

Snášel J., Pichová I. Allosteric regulation of pyruvate kinase from Mycobacterium tuberculosis by metabolites. Biochim. Biophys. Acta Proteins Proteom. 2019;1867:126–139. doi: 10.1016/j.bbapap.2018.11.002. PubMed DOI

Fenton A.W., Reinhart G.D. Mechanism of substrate inhibition in Escherichia coli phosphofructokinase. Biochemistry. 2003;42:12676–12681. doi: 10.1021/bi0349221. PubMed DOI

Fideu M.D., Pérez M.L., Herranz M.J., Ruiz-Amil M. Regulation of glycolysis in sea bass liver: Phosphofructokinase isoenzymes. Rev. Esp. Fisiol. 1989;45:179–186. PubMed

Babul J. Phosphofructokinases from Escherichia coli. Purification and characterization of the nonallosteric isoenzyme. J. Biol. Chem. 1978;253:4350–4355. doi: 10.1016/S0021-9258(17)34726-9. PubMed DOI

Reeves R.E., South D.J., Blytt H.J., Warren L.G. Pyrophosphate: D-fructose-6-phosphate 1-phosphotransferase. A new enzyme with the glycolytic function of 6-phosphofructokinase. J. Biol. Chem. 1974;249:7737–7741. doi: 10.1016/S0021-9258(19)42029-2. PubMed DOI

Fernandes P.M., Kinkead J., McNae I.W., Bringaud F., Michels P.A.M., Walkinshaw M.D. The kinetic characteristics of human and trypanosomid phosphofructokinases for the reverse reaction. Biochem. J. 2019;476:179–191. doi: 10.1042/BCJ20180635. PubMed DOI PMC

Orchard L.M.D., Kornberg H.L. Sequence similarities between the gene specifying 1-phosphofructokinase (fruK), genes specifying other kinases in Escherichia coli K12, and lacC of Staphylococcus aureus. Proc. R. Soc. B Biol. Sci. 1990;242:87–90. doi: 10.1098/rspb.1990.0108. PubMed DOI

Buschmeier B., Hengstenberg W., Deutscher J. Purification and properties of 1-phosphofructokinase from Escherichia coli. FEMS Microbiol. Lett. 1985;29:231–235. doi: 10.1111/j.1574-6968.1985.tb00868.x. DOI

Miallau L., Hunter W.N., McSweeney S.M., Leonard G. Structures of Staphylococcus aureus D-tagatose-6-phosphate kinase implicate domain motions in specificity and mechanism. J. Biol. Chem. 2007;282:19948–19957. doi: 10.1074/jbc.M701480200. PubMed DOI

Bissett D.L., Anderson R.L. Lactose and D-galactose metabolism in group of N-Streptococci: Presence of enzymes for both the D-galactose-1-phosphate and D-tagatose-6-phosphate pathways. J. Bacteriol. 1974;117:318–320. doi: 10.1128/JB.117.1.318-320.1974. PubMed DOI PMC

Newsholme E.A., Sugden P.H., Williams T. Effect of citrate on the activities of 6-phosphofructokinase from nervous and muscle tissues from different animals and its relationship to the regulation of glycolysis. Biochem. J. 1977;166:123–129. doi: 10.1042/bj1660123. PubMed DOI PMC

Kemp R.G., Gunasekera D. Evolution of the allosteric ligand sites of mammalian phosphofructo-1-kinase. Biochemistry. 2002;41:9426–9430. doi: 10.1021/bi020110d. PubMed DOI

Fenton A.W., Reinhart G.D. Disentagling the web of allosteric communication in a homotetramer: Heterotropic inhibition in phosphofructokinase from Escherichia coli. Biochemistry. 2009;48:12323–12328. doi: 10.1021/bi901456p. PubMed DOI PMC

Bartrons R., van Schaftingen E., Vissers S., Hers H.-G. The stimulation of yeast phosphofructokinase by fructose 2,6-bisphosphate. FEBS Lett. 1981;102:985–991. doi: 10.1016/0014-5793(82)80290-1. PubMed DOI

van Laere A.J. Stimulation of phosphofructokinase from Phycomyces blakesleeanus and some other fungi by micromolar concentrations of fructose 2,6-bisphosphate. J. Gen. Microbiol. 1983;129:3281–3285. doi: 10.1099/00221287-129-10-3281. DOI

Heylen A., van Schaftingen E., Hers H.-G. The stimulation of phosphofructokinase from human erythrocytes by fructose 2,6 bisphosphate. FEBS Lett. 1982;143:141–143. doi: 10.1016/0014-5793(82)80291-3. PubMed DOI

Tlapak-Simmons V.L., Reinhart G.D. Comparison of the inhibition by phospho (enol)pyruvate and phosphoglycolate of phosphofructokinase from B. stearothermophilus. Arch. Biochem. Biophys. 1994;308:226–230. doi: 10.1006/abbi.1994.1032. PubMed DOI

Johnson J.L., Reinhart G.D. Influence of MgADP on phosphofructokinase from Escherichia coli. Elucidation of coupling interactions with both substrates. Biochemistry. 1994;33:2635–2643. doi: 10.1021/bi00175a036. PubMed DOI

Johnson J.L., Reinhart G.D. MgATP and fructose-6-phosphate interactions with phosphofructokinase from Escherichia coli. Biochemistry. 1992;31:11510–11518. doi: 10.1021/bi00161a032. PubMed DOI

Novak B., Tyson J.J. Design principles of biochemical oscillators. Nat. Rev. Mol. Cell. Biol. 2008;9:981–991. doi: 10.1038/nrm2530. PubMed DOI PMC

Noy T., Vergnolle O., Hartman T.E., Rhee K.Y., Jacobs W.R., Berney M. Central role of pyruvate kinase in carbon co-catabolism of Mycobacterium tuberculosis. J. Biol. Chem. 2016;291:7060–7069. doi: 10.1074/jbc.M115.707430. PubMed DOI PMC

Mertens E. Pyrophosphate-dependent phosphofructokinase, an anaerobic glycolytic enzyme? FEBS Lett. 1991;285:1–5. doi: 10.1016/0014-5793(91)80711-B. PubMed DOI

Bapteste E., Moreira D., Philippe H. Rampant horizontal gene transfer and phospho-donor change in the evolution of phosphofructokinase. Gene. 2003;318:185–191. doi: 10.1016/S0378-1119(03)00797-2. PubMed DOI

Mertens E., de Jonckheere J., van Schaftingen E. Pyrophosphate-dependent phosphofructokinase from the amoeba Naegleria fowleri, an AMP-sensitive enzyme. Biochem. J. 1993;292:797–803. doi: 10.1042/bj2920797. PubMed DOI PMC

van Schaftingen E., Hers H.-G. Formation of Fructose 2,6-Bisphosphate from Fructose 1,6-Bisphosphate by Intramolecular Cyclization followed by Alkaline Hydrolysis. Eur. J. Biochem. 1981;117:319–323. doi: 10.1111/j.1432-1033.1981.tb06339.x. PubMed DOI

Voll R.J., Ramaprasad S., Vargas D., Younathan E.S. Two-dimensional 1H-, 13C-, and 31P-nuclear magnetic resonance and molecular-mechanics investigation of D-fructose 2,6-bisphosphate. Carbohydr. Res. 1990;203:173–182. doi: 10.1016/0008-6215(90)80015-U. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace