Heat Shock Protein Inhibitor 17-Allyamino-17-Demethoxygeldanamycin, a Potent Inductor of Apoptosis in Human Glioma Tumor Cell Lines, Is a Weak Substrate for ABCB1 and ABCG2 Transporters

. 2021 Jan 29 ; 14 (2) : . [epub] 20210129

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33573093

Grantová podpora
IGA_LF 2020_025 Palacky University Olomouc

Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults and has a poor prognosis. Complex genetic alterations and the protective effect of the blood-brain barrier (BBB) have so far hampered effective treatment. Here, we investigated the cytotoxic effects of heat shock protein 90 (HSP90) inhibitors, geldanamycin (GDN) and 17-allylamino-17-demethoxygeldanamycin (17-AAG, tanespimycin), in a panel of glioma tumor cell lines with various genetic alterations. We also assessed the ability of the main drug transporters, ABCB1 and ABCG2, to efflux GDN and 17-AAG. We found that GDN and 17-AAG induced extensive cell death with the morphological and biochemical hallmarks of apoptosis in all studied glioma cell lines at sub-micro-molar and nanomolar concentrations. Moderate efflux efficacy of GDN and 17-AAG mediated by ABCB1 was observed. There was an insignificant and low efflux efficacy of GDN and 17-AAG mediated by ABCG2. Conclusion: GDN and 17-AAG, in particular, exhibited strong proapoptotic effects in glioma tumor cell lines irrespective of genetic alterations. GDN and 17-AAG appeared to be weak substrates of ABCB1 and ABCG2. Therefore, the BBB would compromise their cytotoxic effects only partially. We hypothesize that GBM patients may benefit from 17-AAG either as a single agent or in combination with other drugs.

Zobrazit více v PubMed

Hanahan D., Weinberg R.A. The Hallmarks of Cancer. Cell. 2000;100:57–70. doi: 10.1016/S0092-8674(00)81683-9. PubMed DOI

Hanahan D., Weinberg R.A. Hallmarks of Cancer: The Next Generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013. PubMed DOI

Calderwood S.K., Khaleque A., Sawyer D.B., Ciocca D.R. Heat shock proteins in cancer: Chaperones of tumorigenesis. Trends Biochem. Sci. 2006;31:164–172. doi: 10.1016/j.tibs.2006.01.006. PubMed DOI

Soo E.T.L., Yip G.W., Lwin Z.M., Kumar S.D., Bay B.-H. Heat shock proteins as novel therapeutic targets in cancer. Vivo. 2008;22:311–315. PubMed

Jego G., Hazoumé A., Seigneuric R., Garrido C. Targeting heat shock proteins in cancer. Cancer Lett. 2013;332:275–285. doi: 10.1016/j.canlet.2010.10.014. PubMed DOI

Chatterjee S., Burns T.F. Targeting Heat Shock Proteins in Cancer: A Promising Therapeutic Approach. Int. J. Mol. Sci. 2017;18:1978. doi: 10.3390/ijms18091978. PubMed DOI PMC

Alifieris C., Trafalis D.T. Glioblastoma multiforme: Pathogenesis and treatment. Pharmacol. Ther. 2015;152:63–82. doi: 10.1016/j.pharmthera.2015.05.005. PubMed DOI

Wick W., Osswald M., Wick A., Winkler F. Treatment of glioblastoma in adults. Ther. Adv. Neurol. Disord. 2018;11:1–13. doi: 10.1177/1756286418790452. PubMed DOI PMC

Bai R.-Y., Staedtke V., Riggins G.J. Molecular targeting of glioblastoma: Drug discovery and therapies. Trends Mol. Med. 2011;17:301–312. doi: 10.1016/j.molmed.2011.01.011. PubMed DOI PMC

Wick W., Weller M., Weiler M., Batchelor T., Yung A.W., Platten M. Pathway inhibition: Emerging molecular targets for treating glioblastoma. Neuro-Oncology. 2011;13:566–579. doi: 10.1093/neuonc/nor039. PubMed DOI PMC

Dunn G.P., Rinne M.L., Wykosky J., Genovese G., Quayle S.N., Dunn I.F., Agarwalla P.K., Chheda M.G., Campos B., Wang A., et al. Emerging insights into the molecular and cellular basis of glioblastoma. Genes Dev. 2012;26:756–784. doi: 10.1101/gad.187922.112. PubMed DOI PMC

Karsy M., Neil J.A., Guan J., Mahan M.A., Colman H., Jensen R.L. A practical review of prognostic correlations of molecular biomarkers in glioblastoma. Neurosurg. Focus. 2015;38:E4. doi: 10.3171/2015.1.FOCUS14755. PubMed DOI

Karsy M., Guan J., Cohen A.L., Jensen R.L., Colman H. New Molecular Considerations for Glioma: IDH, ATRX, BRAF, TERT, H3 K27M. Curr. Neurol. Neurosci. Rep. 2017;17:19. doi: 10.1007/s11910-017-0722-5. PubMed DOI

Polivka J., Jr., Polivka J., Holubec L., Kubikova T., Priban V., Hes O., Pivovarcikova K., Treskova I. Advances in Experimental Targeted Therapy and Immunotherapy for Patients with Glioblastoma Multiforme. Anticancer Res. 2017;37:21–33. doi: 10.21873/anticanres.11285. PubMed DOI

Litak J., Grochowski C., Litak J., Osuchowska I., Gosik K., Radzikowska E., Kamieniak P., Roliński J. TLR-4 Signaling vs. Immune Checkpoints, miRNAs Molecules, Cancer Stem Cells, and Wingless-Signaling Interplay in Glioblastoma Multiforme—Future Perspectives. Int. J. Mol. Sci. 2020;21:3114. doi: 10.3390/ijms21093114. PubMed DOI PMC

Gottesman M.M., Fojo T., Bates S.E. Multidrug resistance in cancer: Role of ATP–dependent transporters. Nat. Rev. Cancer. 2002;2:48–58. doi: 10.1038/nrc706. PubMed DOI

Le Rhun E., Preusser M., Roth P., Reardon D.A., Bent M.V.D., Wen P., Reifenberger G., Weller M. Molecular targeted therapy of glioblastoma. Cancer Treat. Rev. 2019;80:101896. doi: 10.1016/j.ctrv.2019.101896. PubMed DOI

Iglesia R.P., Fernandes C.F.D.L., Coelho B.P., Prado M.B., Escobar M.I.M., Almeida G.H.D.R., Lopes M.H. Heat Shock Proteins in Glioblastoma Biology: Where Do We Stand? Int. J. Mol. Sci. 2019;20:5794. doi: 10.3390/ijms20225794. PubMed DOI PMC

Neckers L., Workman P. Hsp90 molecular chaperone inhibitors: Are we there yet? Clin. Cancer Res. 2012;18:64–76. doi: 10.1158/1078-0432.CCR-11-1000. PubMed DOI PMC

Yang J.-M., Iannone M., Shih W.J., Lin Y., Hait W.N. Disruption of the EF-2 kinase/Hsp90 protein complex: A possible mechanism to inhibit glioblastoma by geldanamycin. Cancer Res. 2001;61:4010–4016. PubMed

García-Morales P., Carrasco-García E., Ruiz-Rico P., Martínez-Mira R., Menéndez-Gutiérrez M.P., Ferragut J.A., Saceda M., Martínez-Lacaci I. Inhibition of Hsp90 function by ansamycins causes downregulation of cdc2 and cdc25c and G2/M arrest in glioblastoma cell lines. Oncogene. 2007;26:7185–7193. doi: 10.1038/sj.onc.1210534. PubMed DOI

Sauvageot C.M.-E., Weatherbee J.L., Kesari S., Winters S.E., Barnes J., DellaGatta J., Ramakrishna N.R., Stiles C.D., Kung A.L.-J., Kieran M.W., et al. Efficacy of the HSP90 inhibitor 17-AAG in human glioma cell lines and tumorigenic glioma stem cells. Neuro-Oncology. 2009;11:109–121. doi: 10.1215/15228517-2008-060. PubMed DOI PMC

Ohba S., Hirose Y., Yoshida K., Yazaki T., Kawase T. Inhibition of 90-kD heat shock protein potentiates the cytotoxicity of chemotherapeutic agents in human glioma cells. J. Neurosurg. 2010;112:33–42. doi: 10.3171/2009.3.JNS081146. PubMed DOI

Gopal U., Bohonowych J.E., Lema-Tome C., Liu A., Garrett-Mayer E., Wang B., Isaacs J.S. A Novel Extracellular Hsp90 Mediated Co-Receptor Function for LRP1 Regulates EphA2 Dependent Glioblastoma Cell Invasion. PLoS ONE. 2011;6:e17649. doi: 10.1371/journal.pone.0017649. PubMed DOI PMC

Huang Y., Blower P.E., Liu R., Dai Z., Pham A.-N., Moon H., Fang J., Sadee W. Chemogenomic Analysis Identifies Geldanamycins as Substrates and Inhibitors of ABCB. Pharm. Res. 2007;24:1702–1712. doi: 10.1007/s11095-007-9300-x. PubMed DOI

Mccollum A.K., TenEyck C.J., Stensgard B., Morlan B.W., Ballman K.V., Jenkins R.B., Toft D.O., Erlichman C. P-Glycoprotein–Mediated Resistance to Hsp90-Directed Therapy Is Eclipsed by the Heat Shock Response. Cancer Res. 2008;68:7419–7427. doi: 10.1158/0008-5472.CAN-07-5175. PubMed DOI PMC

Fujikake N., Nagai Y., Popiel H.A., Okamoto Y., Yamaguchi M., Toda T. Heat Shock Transcription Factor 1-activating Compounds Suppress Polyglutamine-induced Neurodegeneration through Induction of Multiple Molecular Chaperones. J. Biol. Chem. 2008;283:26188–26197. doi: 10.1074/jbc.M710521200. PubMed DOI PMC

Nomura M., Nomura N., Newcomb E.W., Lukyanov Y., Tamasdan C., Zagzag D. Geldanamycin induces mitotic catastrophe and subsequent apoptosis in human glioma cells. J. Cell. Physiol. 2004;201:374–384. doi: 10.1002/jcp.20090. PubMed DOI

Robey R.W., Pluchino K.M., Hall M.D., Fojo A.T., Bates S.E., Gottesman M.M. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer. 2018;18:452–464. doi: 10.1038/s41568-018-0005-8. PubMed DOI PMC

Kosztyu P., Dolezel P., Mlejnek P. Can P-glycoprotein mediate resistance to nilotinib in human leukaemia cells? Pharmacol. Res. 2013;67:79–83. doi: 10.1016/j.phrs.2012.10.012. PubMed DOI

Kosztyu P., Bukvova R., Dolezel P., Mlejnek P. Resistance to daunorubicin, imatinib, or nilotinib depends on expression levels of ABCB1 and ABCG2 in human leukemia cells. Chem. Interact. 2014;219:203–210. doi: 10.1016/j.cbi.2014.06.009. PubMed DOI

Mlejnek P., Kosztyu P., Dolezel P., Bates S.E., Ruzickova E. Reversal of ABCB1 mediated efflux by imatinib and nilotinib in cells expressing various transporter levels. Chem. Interact. 2017;273:171–179. doi: 10.1016/j.cbi.2017.06.012. PubMed DOI

Ruzickova E., Janska R., Dolezel P., Mlejnek P. Clinically relevant interactions of anti-apoptotic Bcl-2 protein inhibitors with ABC transporters. Die Pharm. 2017;72:751–758. PubMed

Pluchino K.M., Hall M.D., Goldsborough A.S., Callaghan R., Gottesman M.M. Collateral sensitivity as a strategy against cancer multidrug resistance. Drug Resist. Updat. 2012;15:98–105. doi: 10.1016/j.drup.2012.03.002. PubMed DOI PMC

Szakács G., Annereau J.P., Lababidi S., Shankavaram U., Arciello A., Bussey K.J., Reinhold W., Guo Y., Kruh G.D., Reimers M., et al. Predicting drug sensitivity and resistance: Profiling ABC transporter genes in cancer cells. Cancer Cell. 2004;6:129–137. doi: 10.1016/j.ccr.2004.06.026. PubMed DOI

Fojo A.T., Ueda K., Slamon D.J., Poplack D.G., Gottesman M.M., Pastan I. Expression of a multidrug-resistance gene in human tumors and tissues. Proc. Natl. Acad. Sci. USA. 1987;84:265–269. doi: 10.1073/pnas.84.1.265. PubMed DOI PMC

Goldstein L.J., Galski H., Fojo A., Willingham M., Lai S.-L., Gazdar A., Pirker R., Green A., Crist W., Brodeur G.M., et al. Expression of Multidrug Resistance Gene in Human Cancers. J. Natl. Cancer Inst. 1989;81:116–124. doi: 10.1093/jnci/81.2.116. PubMed DOI

Miller D.A.W. Regulation of ABC transporters at the blood-brain barrier. Clin. Pharmacol. Ther. 2014;97:395–403. doi: 10.1002/cpt.64. PubMed DOI PMC

Richardson P.G., Chanan-Khan A.A., Alsina M., Albitar M., Berman D., Messina M., Mitsiades C.S., Anderson K.C. Tanespimycin monotherapy in relapsed multiple myeloma: Results of a phase 1 dose-escalation study. Br. J. Haematol. 2010;150:438–445. doi: 10.1111/j.1365-2141.2010.08265.x. PubMed DOI PMC

Waza M., Adachi H., Katsuno M., Minamiyama M., Sang C., Tanaka F., Inukai A., Doyu M., Sobue G. 17-AAG, an Hsp90 inhibitor, ameliorates polyglutamine-mediated motor neuron degeneration. Nat. Med. 2005;11:1088–1095. doi: 10.1038/nm1298. PubMed DOI

Egorin M.J., Zuhowski E.G., Rosen D.M., Sentz D.L., Covey J.M., Eiseman J.L. Plasma pharmacokinetics and tissue distribution of 17-(allylamino)-17-demethoxygeldanamycin (NSC 330507) in CD2F1 mice. Cancer Chemother. Pharmacol. 2001;47:291–302. doi: 10.1007/s002800000242. PubMed DOI

Kim T., Keum G., Pae A.N. Discovery and development of heat shock protein 90 inhibitors as anticancer agents: A review of patented potent geldanamycin derivatives. Expert Opin. Ther. Patents. 2013;23:919–943. doi: 10.1517/13543776.2013.780597. PubMed DOI

Park H.-K., Yoon N.G., Lee J.-E., Hu S., Yoon S., Kim S.Y., Hong J.-H., Nam D., Chae Y.C., Park J.B., et al. Unleashing the full potential of Hsp90 inhibitors as cancer therapeutics through simultaneous inactivation of Hsp90, Grp94, and TRAP. Exp. Mol. Med. 2020;52:79–91. doi: 10.1038/s12276-019-0360-x. PubMed DOI PMC

Tang R., Faussat A.-M., Perrot J.-Y., Marjanovic Z., Cohen S., Storme T., Morjani H., Legrand O., Marie J.-P. Zosuquidar restores drug sensitivity in P-glycoprotein expressing acute myeloid leukemia (AML) BMC Cancer. 2008;8:51. doi: 10.1186/1471-2407-8-51. PubMed DOI PMC

Elkind N.B., Apáti Á., Várady G., Ujhelly O., Szabó K., Homolya L., Buday L., Német K., Sarkadi B., Szentpétery Z., et al. Multidrug Transporter ABCG2 Prevents Tumor Cell Death Induced by the Epidermal Growth Factor Receptor Inhibitor Iressa (ZD1839, Gefitinib) Cancer Res. 2005;65:1770–1777. doi: 10.1158/0008-5472.CAN-04-3303. PubMed DOI

Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983;65:55–63. doi: 10.1016/0022-1759(83)90303-4. PubMed DOI

Kosztyu P., Dolezel P., Vaclavikova R., Mlejnek P. Can the assessment of ABCB 1 gene expression predict its function in vitro? Eur. J. Haematol. 2015;95:150–159. doi: 10.1111/ejh.12470. PubMed DOI

Nicoleti G., Migliorati M.C., Pagliacci F., Grignani C., Riccardi A. rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J. Immunol. Methods. 1991;139:271–279. doi: 10.1016/0022-1759(91)90198-O. PubMed DOI

Darzynkiewicz Z., Bruno S., Del Bino G., Gorczyca W., Hotz M.A., Lassota P., Traganos F. Features of apoptotic cells measured by flow cytometry. Cytometry. 1992;13:795–808. doi: 10.1002/cyto.990130802. PubMed DOI

Mlejnek P., Kuglík P. Induction of apoptosis in HL-60 cells by N(6)-benzyladenosine. J. Cell. Biochem. 2000;77:6–17. doi: 10.1002/(SICI)1097-4644(20000401)77:1<6::AID-JCB2>3.0.CO;2-3. PubMed DOI

Frydrych I., Mlejnek P. Serine protease inhibitors N-α-tosyl-l-lysinyl-chloromethylketone (TLCK) and N-tosyl-l-phenylalaninyl-chloromethylketone (TPCK) are potent inhibitors of activated caspase proteases. J. Cell. Biochem. 2008;103:1646–1656. doi: 10.1002/jcb.21550. PubMed DOI

Mlejnek P., Novák O., Dolezel P. A non-radioactive assay for precise determination of intracellular levels of imatinib and its main metabolite in Bcr-Abl positive cells. Talanta. 2011;83:1466–1471. doi: 10.1016/j.talanta.2010.11.028. PubMed DOI

Krumpochova P., Kocurova A., Dolezel P., Mlejnek P. Assay for determination of daunorubicin in cancer cells with multidrug resistance phenotype. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2011;879:1875–1880. doi: 10.1016/j.jchromb.2011.05.008. PubMed DOI

Mlejnek P., Dolezel P. N-acetylcysteine prevents the geldanamycin cytotoxicity by forming geldanamycin–N-acetylcysteine adduct. Chem. Interact. 2014;220:248–254. doi: 10.1016/j.cbi.2014.06.025. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...