Cytocompatibility of Graphene Monolayer and Its Impact on Focal Cell Adhesion, Mitochondrial Morphology and Activity in BALB/3T3 Fibroblasts
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
505-10-072500-L00221-99 and 505-10-072500-Q00396-99
Szkola Glówna Gospodarstwa Wiejskiego w Warszawie
PubMed
33573304
PubMed Central
PMC7866834
DOI
10.3390/ma14030643
PII: ma14030643
Knihovny.cz E-resources
- Keywords
- cytocompatibility, fibroblast, focal contact, graphene, mitochondria,
- Publication type
- Journal Article MeSH
This study investigates the effect of graphene scaffold on morphology, viability, cytoskeleton, focal contacts, mitochondrial network morphology and activity in BALB/3T3 fibroblasts and provides new data on biocompatibility of the "graphene-family nanomaterials". We used graphene monolayer applied onto glass cover slide by electrochemical delamination method and regular glass cover slide, as a reference. The morphology of fibroblasts growing on graphene was unaltered, and the cell viability was 95% compared to control cells on non-coated glass slide. There was no significant difference in the cell size (spreading) between both groups studied. Graphene platform significantly increased BALB/3T3 cell mitochondrial activity (WST-8 test) compared to glass substrate. To demonstrate the variability in focal contacts pattern, the effect of graphene on vinculin was examined, which revealed a significant increase in focal contact size comparing to control-glass slide. There was no disruption in mitochondrial network morphology, which was branched and well connected in relation to the control group. Evaluation of the JC-1 red/green fluorescence intensity ratio revealed similar levels of mitochondrial membrane potential in cells growing on graphene-coated and uncoated slides. These results indicate that graphene monolayer scaffold is cytocompatible with connective tissue cells examined and could be beneficial for tissue engineering therapy.
Faculty of Medicine Pilsen Charles University Prague Cz 121 Prague Czech Republic
Faculty of Physics Warsaw University of Technology 00 662 Warsaw Poland
See more in PubMed
ISO . Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity. International Organization for Standardization (ISO); Geneva, Switzerland: 2009. ISO 10993-5.
Brabu B., Haribabu S., Revathy M., Anitha S., Thangapandiyan M., Navaneethakrishnan K.R., Gopalakrishnan C., Murugan S.S., Kumaravel T.S. Biocompatibility studies on lanthanum oxide nanoparticles. Toxicol. Res. 2015;4:1037–1044. doi: 10.1039/C4TX00198B. DOI
Li W., Zhou J., Xu Y. Study of the in vitro cytotoxicity testing of medical devices. Biomed. Rep. 2015;3:617–620. doi: 10.3892/br.2015.481. PubMed DOI PMC
Park J.C., Park B.J., Lee D.H., Suh H., Kim D.G., Kwom O.H. Evaluation of the cytotoxicity of polyetherurethane (PU) film containing zinc diethyldithiocarbamate (ZDEC) on various cell lines. Yonsei Med. J. 2002;43:518–526. doi: 10.3349/ymj.2002.43.4.518. PubMed DOI
Schmidt C.E., Horwitz A.F., Lauffenburger D.A., Sheetz M.P. Integrin-Cytoskeletal interactions in migrating fibroblasts are dynamic, asymmetric, and regulated. J. Cell Biol. 1993;123:977–991. doi: 10.1083/jcb.123.4.977. PubMed DOI PMC
Lasocka I., Szulc-Dąbrowska L., Skibniewski M., Skibniewska E., Strupiński W., Pasternak I., Kmieć H., Kowalczyk P. Biocompatibility of pristine graphene monolayer: Scaffold for fibroblast. Toxicol. In Vitro. 2018;48:276–285. doi: 10.1016/j.tiv.2018.01.028. PubMed DOI
Albulescu R., Codorean E., Albulescu L., Caraene G., Vulturescu V., Trinconi C. In vitro biocompatibility testing of implantable biomaterials. Rom. Biotechnol. Lett. 2008;13:3863–3872.
Poskus L.T., Lima R.S.M.S., Lima I.R., Guilherme J., Guimaraes A., Moreira da Silva E., Granjeiro J.M. Cytotoxicity of current adhesive systems: In vitro testing on cell culture of L929 and balb/c 3T3 fibroblasts. Rev. Odonto Ciênc. J. Dent. Sci. 2009;24:129–134.
Syama S., Mohanan P.V. Safety and biocompatibility of graphene: A new generation nanomaterial for biomedical application. Int. J. Biol. Macromol. 2016;86:546–555. doi: 10.1016/j.ijbiomac.2016.01.116. PubMed DOI
Zhang B., Wei P., Zhou Z., Wei T. Interactions of graphene with mammalian cells: Molecular mechanisms and biomedical insights. Adv. Drug Deliv. Rev. 2016;105:145–162. doi: 10.1016/j.addr.2016.08.009. PubMed DOI
Kuo C.W., Chueh D.Y., Chen P. Investigation of size-dependent cell adhesion on nanostructured interfaces. J. Nanobiotechnol. 2014;12:54. doi: 10.1186/s12951-014-0054-4. PubMed DOI PMC
Dalby M.J., García A.J., Salmeron-Sanchez M. Receptor control in mesenchymal stem cell engineering. Nat. Rev. Mater. 2018;3:17091. doi: 10.1038/natrevmats.2017.91. DOI
Young L.E., Higgs H.N. Focal adhesions undergo longitudinal splitting into fixed-width units. Curr. Biol. CB. 2018;28:2033–2045. doi: 10.1016/j.cub.2018.04.073. PubMed DOI PMC
Gregorczyk K.P., Szulc-Dąbrowska L., Wyżewski Z., Struzik J., Niemiałtowski M. Changes in the mitochondrial network during ectromelia virus infection of permissive L929 cells. Acta Biochim. Polonica. 2014;61:171–177. doi: 10.18388/abp.2014_1940. PubMed DOI
Friedman J.R., Nunnari J. Mitochondrial form and function. Nature. 2014;505:335–343. doi: 10.1038/nature12985. PubMed DOI PMC
Gregorczyk K.P., Wyżewski Z., Szczepanowska J., Toka F.N., Mielcarska M.B., Bossowska-Nowicka M., Szulc-Dąbrowska L. Ectromelia virus affects mitochondrial network morphology, distribution, and physiology in murine fibroblasts and macrophage cell line. Viruses. 2018;10:266. doi: 10.3390/v10050266. PubMed DOI PMC
Jaworski S., Strojny B., Sawosz E., Wierzbicki M., Grodzik M., Kutwin M., Daniluk K., Chwalibóg A. Degradation of mitochondria and oxidative stress as the main mechanism of toxicity of pristine graphene on U87 glioblastoma cells and tumors and HS-5 cells. Int. J. Mol. Sci. 2019;20:650. doi: 10.3390/ijms20030650. PubMed DOI PMC
Ferrari A.C., Meyer J.C., Scardaci V., Casiraghi C., Lazzeri M., Mauri F., Piscanec S., Jiang D., Novoselov K.S., Roth S., et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006;97:189401. doi: 10.1103/PhysRevLett.97.187401. PubMed DOI
Gupta A., Chen G., Joshi P., Tadigadapa S., Eklund P.C. Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett. 2006;6:2667–2673. doi: 10.1021/nl061420a. PubMed DOI
Graf D., Molitor F., Ensslin K., Stampfer C., Jungen A., Hierold C., Wirtz L. Spatially resolved Raman spectroscopy of single- and few-layer graphene. Nano Lett. 2007;7:238–242. doi: 10.1021/nl061702a. PubMed DOI
Lee D.S., Riedl C., Krauss B., von Klitzing K., Starke U., Smet J.H. Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2. Nano Lett. 2008;9:4320–4325. doi: 10.1021/nl802156w. PubMed DOI
Wiegand C., Hipler U.C. Methods for the measurement of cell and tissue compatibility including tissue regeneration processes. GMS Krankenh. Hyg. Interdiszip. 2008;3:Doc12. PubMed PMC
Coradeghini R., Gioria S., García P.C., Nativo P., Franchni F., Gilliliand D., Ponti J., Rossi F. Size-Dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts. Toxicol. Lett. 2013;217:205–216. doi: 10.1016/j.toxlet.2012.11.022. PubMed DOI
Vietti G., Ibouraadaten S., Palmai-Pallag M., Yakoub Y., Bailly C., Fenoglio I., Marbaix E., Lison D., van Brule S. Towards predicting the lung fibrogenic activity of nanomaterials: Experimental validation of an in vitro fibroblast proliferation assay. Part. Fibre Toxicol. 2013;10:52. doi: 10.1186/1743-8977-10-52. PubMed DOI PMC
Thrivikraman G., Madras G., Basu B. In vitro/in vivo assessment and mechanisms of toxicity of bioceramic materials and its wear particulates. RSC Adv. 2014;4:12763–12781. doi: 10.1039/c3ra44483j. DOI
Gentile F., Tirinato L., Battista E., Causa F., Liberale C., di Fabrizo E.M., Decuzzi P. Cells preferentially grow on rough substrates. Biomaterials. 2010;31:7205–7212. doi: 10.1016/j.biomaterials.2010.06.016. PubMed DOI
Biggs M.J.P., Richards R.G., Dalby M.J. Nanotopographical modification: A regulator of cellular function through focal adhesions. Nanomedicine. 2010;6:619–633. doi: 10.1016/j.nano.2010.01.009. PubMed DOI PMC
Yang Y., Asiri A.M., Tang Z., Du D., Lin Y. Graphene based materials for biomedical applications. Mater. Today. 2013;16:365–373. doi: 10.1016/j.mattod.2013.09.004. DOI
Kim J., Choi K.S., Kim Y., Lim K.T., Seonwoo H., Park Y., Kim D.H., Choung P.H., Cho C.S., Kim S.Y., et al. Bioactive effects of graphene oxide cell culture substratum on structure and function of human adipose-derived stem cells. J. Biomed. Mater. Res. A. 2013;101:3520–3530. doi: 10.1002/jbm.a.34659. PubMed DOI
Nishida E., Miyaji H., Kato A., Takita H., Iwanaga T., Momose T., Ogawa K., Murakami S., Sugaya T., Kawanami M. Graphene oxide scaffold accelerates cellular proliferative response and alveolar bone healing of tooth extraction socket. Int. J. Nanomed. 2016;11:2265–2277. PubMed PMC
Zhou C., Wang Q., Zhang D., Cai L., Du W., Xie J. Compliant substratum modulates vinculin expression in focal adhesion plaques in skeletal cells. Int. J. Oral Sci. 2019;11:18. doi: 10.1038/s41368-019-0052-3. PubMed DOI PMC
Bays J.L., DeMali K.A. Vinculin in cell-cell and cell-matrix adhesions. Cell. Mol. Life Sci. CMLS. 2017;74:2999–3009. doi: 10.1007/s00018-017-2511-3. PubMed DOI PMC
Kim D.H., Wirtz D. Focal adhesion size uniquely predicts cell migration. FASEB J. 2013;27:1351–1361. doi: 10.1096/fj.12-220160. PubMed DOI PMC
Kamogashira T., Hayashi K., Fujimoto C., Iwasaki S., Yamasoba T. Functionally and morphologically damaged mitochondria observed in auditory cells under senescence-inducing stress. NPJ Aging Mech. Dis. 2017;3:2. doi: 10.1038/s41514-017-0002-2. PubMed DOI PMC
Leonard A.P., Cameron R.B., Speiser J.L., Wolf B.J., Peterson Y.K., Schnellmann R.G., Beeson C.C., Rohrer B. Quantitative analysis of mitochondrial morphology and membrane potential in living cells using high-content imaging, machine learning, and morphological binning. Biochim. Biophys. Acta. 2015;1853:348–360. doi: 10.1016/j.bbamcr.2014.11.002. PubMed DOI PMC
Rafelski S.M. Mitochondrial network morphology: Building an integrative, geometrical view. BMC Biol. 2013;11:71. doi: 10.1186/1741-7007-11-71. PubMed DOI PMC
Rambold A.S., Kostelecky B., Elia N., Lippincott-Schwartz J. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc. Natl. Acad. Sci. USA. 2011;108:10190–10195. doi: 10.1073/pnas.1107402108. PubMed DOI PMC