Evidence for reduced immune gene diversity and activity during the evolution of termites

. 2021 Feb 24 ; 288 (1945) : 20203168. [epub] 20210217

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33593190

The evolution of biological complexity is associated with the emergence of bespoke immune systems that maintain and protect organism integrity. Unlike the well-studied immune systems of cells and individuals, little is known about the origins of immunity during the transition to eusociality, a major evolutionary transition comparable to the evolution of multicellular organisms from single-celled ancestors. We aimed to tackle this by characterizing the immune gene repertoire of 18 cockroach and termite species, spanning the spectrum of solitary, subsocial and eusocial lifestyles. We find that key transitions in termite sociality are correlated with immune gene family contractions. In cross-species comparisons of immune gene expression, we find evidence for a caste-specific social defence system in termites, which appears to operate at the expense of individual immune protection. Our study indicates that a major transition in organismal complexity may have entailed a fundamental reshaping of the immune system optimized for group over individual defence.

Zobrazit více v PubMed

Pradeu T. 2011. The limits of the self: immunology and biological identity. Oxford, UK: Oxford University Press.

Turnbull C, et al. 2011. Antimicrobial strength increases with group size: implications for social evolution. Biol. Lett. 7, 249-252. (10.1098/rsbl.2010.0719) PubMed DOI PMC

Hoggard SJ, Wilson PD, Beattie AJ, Stow AJ. 2011. Social complexity and nesting habits are factors in the evolution of antimicrobial defences in wasps. PLoS ONE 6, e21763. (10.1371/journal.pone.0021763) PubMed DOI PMC

Turnbull C, et al. 2012. Primordial enemies: fungal pathogens in thrips societies. PLoS ONE 7, e49737. (10.1371/journal.pone.0049737) PubMed DOI PMC

Barribeau SM, et al. 2015. A depauperate immune repertoire precedes evolution of sociality in bees. Genome Biol. 16, 83. (10.1186/s13059-015-0628-y) PubMed DOI PMC

Otani S, Bos N, Yek SH. 2016. Transitional complexity of social insect immunity. Front. Ecol. Evol. 4, 69. (10.3389/fevo.2016.00069) DOI

Rolff J, Reynolds S. 2009. Insect infection and immunity: evolution, ecology, and mechanisms. Oxford, UK: Oxford University Press.

Cotter S, Kilner R. 2010. Personal immunity versus social immunity. Behav. Ecol. 21, 663-668. (10.1093/beheco/arq070) DOI

Cremer S, Pull CD, Fuerst MA. 2018. Social immunity: emergence and evolution of colony-level disease protection. Annu. Rev. Entomol. 63, 105-123. (10.1146/annurev-ento-020117-043110) PubMed DOI

Pull CD, McMahon DP. 2020. Superorganism immunity: a major transition in immune system evolution. Front. Ecol. Evol. 8, 186. (10.3389/fevo.2020.00186) DOI

Harpur BA, et al. 2019. Integrative genomics reveals the genetics and evolution of the honey bee's social immune system. Genome Biol. Evol. 11, 937-948. (10.1093/gbe/evz018) PubMed DOI PMC

He S, Johnston PR, Kuropka B, Lokatis S, Weise C, Plarre R, Kunte HJ, McMahon DP. 2018. Termite soldiers contribute to social immunity by synthesizing potent oral secretions. Insect. Mol. Biol. 27, 564-576. (10.1111/imb.12499) PubMed DOI

Kutsukake M, Moriyama M, Shigenobu S, Meng X-Y, Nikoh N, Noda C, Kobayashi S, Fukatsu T. 2019. Exaggeration and cooption of innate immunity for social defense. Proc. Natl Acad. Sci. USA 116, 8950-8959. (10.1073/pnas.1900917116) PubMed DOI PMC

Scharf ME, Wu-Scharf D, Pittendrigh BR, Bennett GW. 2003. Caste- and development-associated gene expression in a lower termite. Genome Biol. 4, R62. (10.1186/gb-2003-4-10-r62) PubMed DOI PMC

Husseneder C, Simms DM. 2014. Effects of caste on the expression of genes associated with septic injury and xenobiotic exposure in the Formosan subterranean termite. PLoS ONE 9, e105582. (10.1371/journal.pone.0105582) PubMed DOI PMC

Mitaka Y, Kobayashi K, Mikheyev A, Tin MM, Watanabe Y, Matsuura K. 2016. Caste-specific and sex-specific expression of chemoreceptor genes in a termite. PLoS ONE 11, e0146125. (10.1371/journal.pone.0146125) PubMed DOI PMC

Jones BM, Kingwell CJ, Wcislo WT, Robinson GE. 2017. Caste-biased gene expression in a facultatively eusocial bee suggests a role for genetic accommodation in the evolution of eusociality. Proc. R. Soc. B 284, 20162228. (10.1098/rspb.2016.2228) PubMed DOI PMC

Mitaka Y, Kobayashi K, Matsuura K. 2017. Caste-, sex-, and age-dependent expression of immune-related genes in a Japanese subterranean termite, Reticulitermes speratus. PLoS ONE 12, e0175417. (10.1371/journal.pone.0175417) PubMed DOI PMC

Stow A, Briscoe D, Gillings M, Holley M, Smith S, Leys R, Silberbauer T, Turnbull C, Beattie A. 2007. Antimicrobial defences increase with sociality in bees. Biol. Lett. 3, 422-424. (10.1098/rsbl.2007.0178) PubMed DOI PMC

Bignell DE, Eggleton P. 2000. Termites in ecosystems. In Termites: evolution, sociality, symbioses, ecology (eds T Abe, DE Bignell, M Higashi), pp. 363-387. Berlin, Germany: Springer.

Rosengaus RB, Traniello JF, Bulmer MS. 2010. Ecology, behavior and evolution of disease resistance in termites. In Biology of termites: a modern synthesis (eds DE Bignell, Y Roisin, N Lo), pp. 165-191. Berlin, Germany: Springer.

Chouvenc T, Robert A, Semon E, Bordereau C. 2012. Burial behaviour by dealates of the termite Pseudacanthotermes spiniger (Termitidae, Macrotermitinae) induced by chemical signals from termite corpses. Insectes Soc. 59, 119-125. (10.1007/s00040-011-0197-3) DOI

Terrapon N, et al. 2014. Molecular traces of alternative social organization in a termite genome. Nat. Commun. 5, 3636. (10.1038/ncomms4636) PubMed DOI

Evangelista DA, et al. 2019. An integrative phylogenomic approach illuminates the evolutionary history of cockroaches and termites (Blattodea). Proc. R. Soc. B 286, 20182076. (10.1098/rspb.2018.2076) PubMed DOI PMC

Inward D, Beccaloni G, Eggleton P. 2007. Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biol. Lett. 3, 331-335. (10.1098/rsbl.2007.0102) PubMed DOI PMC

Lo N, Eggleton P. 2010. Termite phylogenetics and co-cladogenesis with symbionts. In Biology of termites: a modern synthesis (eds DE Bignell, Y Roisin, N Lo), pp. 27-50. Berlin, Germany: Springer.

Nalepa CA. 2015. Origin of termite eusociality: trophallaxis integrates the social, nutritional, and microbial environments. Ecol. Entomol. 40, 323-335. (10.1111/een.12197) DOI

Bucek A, Šobotník J, He S, Shi M, McMahon DP, Holmes EC, Roisin Y, Lo N, Bourguignon T. 2019. Evolution of termite symbiosis informed by transcriptome-based phylogenies. Curr. Biol. 29, 3728-3734. (10.1016/j.cub.2019.08.076) PubMed DOI

Hernández LJ, Riessberger-Gallé U, Crailsheim K, Schuehly W. 2017. Cuticular hydrocarbon cues of immune-challenged workers elicit immune activation in honeybee queens. Mol. Ecol. 26, 3062-3073. (10.1111/mec.14086) PubMed DOI

Pradeu T. 2019. Philosophy of biology: immunology and individuality. Elife 8, e47384. (10.7554/eLife.47384) PubMed DOI PMC

Zhang ZT, Zhu SY. 2009. Drosomycin, an essential component of antifungal defence in Drosophila. Insect. Mol. Biol. 18, 549-556. (10.1111/j.1365-2583.2009.00907.x) PubMed DOI

Bulmer M, Denier D, Velenovsky J, Hamilton C. 2012. A common antifungal defense strategy in Cryptocercus woodroaches and termites. Insectes Soc. 59, 469-478. (10.1007/s00040-012-0241-y) DOI

Zelensky AN, Gready JE. 2005. The C-type lectin-like domain superfamily. FEBS J. 272, 6179-6217. (10.1111/j.1742-4658.2005.05031.x) PubMed DOI

Zhu Y, Yu X, Cheng G. 2020. Insect C-Type Lectins in Microbial Infections. In Lectin in host defense against microbial infections (ed. S-L Hsieh), pp. 129-140. Berlin, Germany: Springer.

Xia X, You M, Rao X.-J, Yu X.-Q. 2018. Insect C-type lectins in innate immunity. Dev. Comp. Immunol. 83, 70-79. (10.1016/j.dci.2017.11.020) PubMed DOI

Pees B, Yang W, Zárate-Potes A, Schulenburg H, Dierking K. 2016. High innate immune specificity through diversified C-type lectin-like domain proteins in invertebrates. J. Innate Immun. 8, 129-142. (10.1159/000441475) PubMed DOI PMC

Arumugam G, Sreeramulu B, Paulchamy R, Thangavel S, Sundaram J. 2017. Purification and functional characterization of lectin with phenoloxidase activity from the hemolymph of cockroach, Periplaneta americana. Arch. Insect. Biochem. Physiol. 95, e21390. (10.1002/arch.21390) PubMed DOI

Jomori T, Natori S. 1992. Function of the lipopolysaccharide-binding protein of Periplaneta americana as an opsonin. FEBS Lett. 296, 283-286. (10.1016/0014-5793(92)80305-Z) PubMed DOI

Kawasaki K, Kubo T, Natori S. 1993. A novel role of Periplaneta lectin as an opsonin to recognize 2-keto-3-deoxy octonate residues of bacterial lipopolysaccharides. Comp. Biochem. Physiol. B 106, 675-680. (10.1016/0305-0491(93)90148-X) PubMed DOI

Chen C, Durrant H, Newton R, Ratcliffe N. 1995. A study of novel lectins and their involvement in the activation of the prophenoloxidase system in Blaberus discoidalis. Biochem. J. 310, 23-31. (10.1042/bj3100023) PubMed DOI PMC

Harrison MC, et al. 2018. Expansions of key protein families in the German cockroach highlight the molecular basis of its remarkable success as a global indoor pest. J. Exp. Zool. B Mol. Dev. Evol. 330, 254-264. (10.1002/jez.b.22824) PubMed DOI PMC

Jomori T, Kubo T, Natori S. 1990. Purification and characterization of lipopolysaccharide-binding protein from hemolymph of American cockroach Periplaneta americana. FEBS J. 190, 201-206. (10.1111/j.1432-1033.1990.tb15565.x) PubMed DOI

Jomori T, Natori S. 1991. Molecular cloning of cDNA for lipopolysaccharide-binding protein from the hemolymph of the American cockroach, Periplaneta americana: similarity of the protein with animal lectins and its acute phase expression. J. Biol. Chem. 266, 13 318-13 323. (10.1016/S0021-9258(18)98841-1) PubMed DOI

Donovan S, Jones D, Sands W, Eggleton P. 2000. Morphological phylogenetics of termites (Isoptera). Biol J. Linn. Soc. 70, 467-513. (10.1111/j.1095-8312.2000.tb01235.x) DOI

López-Uribe MM, Sconiers WB, Frank SD, Dunn RR, Tarpy DR. 2016. Reduced cellular immune response in social insect lineages. Biol. Lett. 12, 20150984. (10.1098/rsbl.2015.0984) PubMed DOI PMC

Grozinger CM, Fan Y, Hoover SE, Winston ML. 2007. Genome-wide analysis reveals differences in brain gene expression patterns associated with caste and reproductive status in honey bees (Apis mellifera). Mol. Ecol. 16, 4837-4848. (10.1111/j.1365-294X.2007.03545.x) PubMed DOI

Graeff J, Jemielity S, Parker JD, Parker KM, Keller L. 2007. Differential gene expression between adult queens and workers in the ant Lasius niger. Mol. Ecol. 16, 675-683. (10.1111/j.1365-294X.2007.03162.x) PubMed DOI

Quque M, Benhaim-Delarbre M, Deneubourg J-L, Sueur C, Criscuolo F, Bertile F. 2019. Division of labour in the black garden ant (Lasius niger) leads to three distinct proteomes. J. Insect. Physiol. 117, 103907. (10.1016/j.jinsphys.2019.103907) PubMed DOI

Gao Q, Thompson G. 2015. Social context affects immune gene expression in a subterranean termite. Insectes Soc. 62, 167-170. (10.1007/s00040-015-0389-3) DOI

Inward DJ, Vogler AP, Eggleton P. 2007. A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Mol. Phylogenet. Evol. 44, 953-967. (10.1016/j.ympev.2007.05.014) PubMed DOI

Rosengaus R, Jordan C, Lefebvre M, Traniello J. 1999. Pathogen alarm behavior in a termite: a new form of communication in social insects. Naturwissenschaften 86, 544-548. (10.1007/s001140050672) PubMed DOI

Ohkuma M, Noda S, Hongoh Y, Nalepa CA, Inoue T. 2008. Inheritance and diversification of symbiotic trichonymphid flagellates from a common ancestor of termites and the cockroach Cryptocercus. Phil. Trans. R Soc. B 276, 239-245. (10.1098/rspb.2008.1094) PubMed DOI PMC

Grabherr MG, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644-652. (10.1038/nbt.1883) PubMed DOI PMC

Emms DM, Kelly S. 2015. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 16, 157. (10.1186/s13059-015-0721-2) PubMed DOI PMC

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312-1313. (10.1093/bioinformatics/btu033) PubMed DOI PMC

Aberer AJ, Kobert K, Stamatakis A. 2014. ExaBayes: massively parallel Bayesian tree inference for the whole-genome era. Mol. Biol. Evol. 31, 2553-2556. (10.1093/molbev/msu236) PubMed DOI PMC

Lartillot N, Philippe H. 2004. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol. Biol. Evol. 21, 1095-1109. (10.1093/molbev/msh112) PubMed DOI

Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59. (10.1038/nmeth.3176) PubMed DOI

Sackton TB, Lazzaro BP, Clark AG. 2017. Rapid expansion of immune-related gene families in the house fly, Musca domestica. Mol. Biol. Evol. 34, 857-872. (10.1093/molbev/msw285) PubMed DOI PMC

Keck F, Rimet F, Bouchez A, Franc A. 2016. phylosignal: an R package to measure, test, and explore the phylogenetic signal. Ecol. Evol. 6, 2774-2780. (10.1002/ece3.2051) PubMed DOI PMC

De Bie T, Cristianini N, Demuth JP, Hahn MW.. 2006. CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22, 1269-1271. (10.1093/bioinformatics/btl097) PubMed DOI

Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. 2017. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417. (10.1038/nmeth.4197) PubMed DOI PMC

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550. (10.1186/s13059-014-0550-8) PubMed DOI PMC

Supek F, Bošnjak M, Škunca N, Šmuc T. 2011. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6, e21800. (10.1371/journal.pone.0021800) PubMed DOI PMC

He S, et al. . 2020. Dataset from: Evidence for reduced immune gene diversity and activity during the evolution of termites. Dryad Digital Repository. (10.5061/dryad.nzs7h44qp) PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Evidence for reduced immune gene diversity and activity during the evolution of termites

. 2021 Feb 24 ; 288 (1945) : 20203168. [epub] 20210217

Zobrazit více v PubMed

Dryad
10.5061/dryad.nzs7h44qp

figshare
10.6084/m9.figshare.c.5301210

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...