Evidence for reduced immune gene diversity and activity during the evolution of termites
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33593190
PubMed Central
PMC7934958
DOI
10.1098/rspb.2020.3168
Knihovny.cz E-zdroje
- Klíčová slova
- cockroach, contraction, expansion, major transition, social insect, subsocial,
- MeSH
- biologická evoluce MeSH
- fylogeneze MeSH
- Isoptera * genetika MeSH
- sociální chování MeSH
- švábi * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The evolution of biological complexity is associated with the emergence of bespoke immune systems that maintain and protect organism integrity. Unlike the well-studied immune systems of cells and individuals, little is known about the origins of immunity during the transition to eusociality, a major evolutionary transition comparable to the evolution of multicellular organisms from single-celled ancestors. We aimed to tackle this by characterizing the immune gene repertoire of 18 cockroach and termite species, spanning the spectrum of solitary, subsocial and eusocial lifestyles. We find that key transitions in termite sociality are correlated with immune gene family contractions. In cross-species comparisons of immune gene expression, we find evidence for a caste-specific social defence system in termites, which appears to operate at the expense of individual immune protection. Our study indicates that a major transition in organismal complexity may have entailed a fundamental reshaping of the immune system optimized for group over individual defence.
Berlin Center for Genomics in Biodiversity Research Königin Luise Str 6 8 14195 Berlin Germany
Institute for Evolution and Biodiversity University of Münster Münster Germany
Institute of Biology Freie Universität Berlin Schwendenerstr 1 14195 Berlin Germany
Leibniz Institute of Freshwater Ecology and Inland Fisheries Müggelseedamm 310 12587 Berlin Germany
Zobrazit více v PubMed
Pradeu T. 2011. The limits of the self: immunology and biological identity. Oxford, UK: Oxford University Press.
Turnbull C, et al. 2011. Antimicrobial strength increases with group size: implications for social evolution. Biol. Lett. 7, 249-252. (10.1098/rsbl.2010.0719) PubMed DOI PMC
Hoggard SJ, Wilson PD, Beattie AJ, Stow AJ. 2011. Social complexity and nesting habits are factors in the evolution of antimicrobial defences in wasps. PLoS ONE 6, e21763. (10.1371/journal.pone.0021763) PubMed DOI PMC
Turnbull C, et al. 2012. Primordial enemies: fungal pathogens in thrips societies. PLoS ONE 7, e49737. (10.1371/journal.pone.0049737) PubMed DOI PMC
Barribeau SM, et al. 2015. A depauperate immune repertoire precedes evolution of sociality in bees. Genome Biol. 16, 83. (10.1186/s13059-015-0628-y) PubMed DOI PMC
Otani S, Bos N, Yek SH. 2016. Transitional complexity of social insect immunity. Front. Ecol. Evol. 4, 69. (10.3389/fevo.2016.00069) DOI
Rolff J, Reynolds S. 2009. Insect infection and immunity: evolution, ecology, and mechanisms. Oxford, UK: Oxford University Press.
Cotter S, Kilner R. 2010. Personal immunity versus social immunity. Behav. Ecol. 21, 663-668. (10.1093/beheco/arq070) DOI
Cremer S, Pull CD, Fuerst MA. 2018. Social immunity: emergence and evolution of colony-level disease protection. Annu. Rev. Entomol. 63, 105-123. (10.1146/annurev-ento-020117-043110) PubMed DOI
Pull CD, McMahon DP. 2020. Superorganism immunity: a major transition in immune system evolution. Front. Ecol. Evol. 8, 186. (10.3389/fevo.2020.00186) DOI
Harpur BA, et al. 2019. Integrative genomics reveals the genetics and evolution of the honey bee's social immune system. Genome Biol. Evol. 11, 937-948. (10.1093/gbe/evz018) PubMed DOI PMC
He S, Johnston PR, Kuropka B, Lokatis S, Weise C, Plarre R, Kunte HJ, McMahon DP. 2018. Termite soldiers contribute to social immunity by synthesizing potent oral secretions. Insect. Mol. Biol. 27, 564-576. (10.1111/imb.12499) PubMed DOI
Kutsukake M, Moriyama M, Shigenobu S, Meng X-Y, Nikoh N, Noda C, Kobayashi S, Fukatsu T. 2019. Exaggeration and cooption of innate immunity for social defense. Proc. Natl Acad. Sci. USA 116, 8950-8959. (10.1073/pnas.1900917116) PubMed DOI PMC
Scharf ME, Wu-Scharf D, Pittendrigh BR, Bennett GW. 2003. Caste- and development-associated gene expression in a lower termite. Genome Biol. 4, R62. (10.1186/gb-2003-4-10-r62) PubMed DOI PMC
Husseneder C, Simms DM. 2014. Effects of caste on the expression of genes associated with septic injury and xenobiotic exposure in the Formosan subterranean termite. PLoS ONE 9, e105582. (10.1371/journal.pone.0105582) PubMed DOI PMC
Mitaka Y, Kobayashi K, Mikheyev A, Tin MM, Watanabe Y, Matsuura K. 2016. Caste-specific and sex-specific expression of chemoreceptor genes in a termite. PLoS ONE 11, e0146125. (10.1371/journal.pone.0146125) PubMed DOI PMC
Jones BM, Kingwell CJ, Wcislo WT, Robinson GE. 2017. Caste-biased gene expression in a facultatively eusocial bee suggests a role for genetic accommodation in the evolution of eusociality. Proc. R. Soc. B 284, 20162228. (10.1098/rspb.2016.2228) PubMed DOI PMC
Mitaka Y, Kobayashi K, Matsuura K. 2017. Caste-, sex-, and age-dependent expression of immune-related genes in a Japanese subterranean termite, Reticulitermes speratus. PLoS ONE 12, e0175417. (10.1371/journal.pone.0175417) PubMed DOI PMC
Stow A, Briscoe D, Gillings M, Holley M, Smith S, Leys R, Silberbauer T, Turnbull C, Beattie A. 2007. Antimicrobial defences increase with sociality in bees. Biol. Lett. 3, 422-424. (10.1098/rsbl.2007.0178) PubMed DOI PMC
Bignell DE, Eggleton P. 2000. Termites in ecosystems. In Termites: evolution, sociality, symbioses, ecology (eds T Abe, DE Bignell, M Higashi), pp. 363-387. Berlin, Germany: Springer.
Rosengaus RB, Traniello JF, Bulmer MS. 2010. Ecology, behavior and evolution of disease resistance in termites. In Biology of termites: a modern synthesis (eds DE Bignell, Y Roisin, N Lo), pp. 165-191. Berlin, Germany: Springer.
Chouvenc T, Robert A, Semon E, Bordereau C. 2012. Burial behaviour by dealates of the termite Pseudacanthotermes spiniger (Termitidae, Macrotermitinae) induced by chemical signals from termite corpses. Insectes Soc. 59, 119-125. (10.1007/s00040-011-0197-3) DOI
Terrapon N, et al. 2014. Molecular traces of alternative social organization in a termite genome. Nat. Commun. 5, 3636. (10.1038/ncomms4636) PubMed DOI
Evangelista DA, et al. 2019. An integrative phylogenomic approach illuminates the evolutionary history of cockroaches and termites (Blattodea). Proc. R. Soc. B 286, 20182076. (10.1098/rspb.2018.2076) PubMed DOI PMC
Inward D, Beccaloni G, Eggleton P. 2007. Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biol. Lett. 3, 331-335. (10.1098/rsbl.2007.0102) PubMed DOI PMC
Lo N, Eggleton P. 2010. Termite phylogenetics and co-cladogenesis with symbionts. In Biology of termites: a modern synthesis (eds DE Bignell, Y Roisin, N Lo), pp. 27-50. Berlin, Germany: Springer.
Nalepa CA. 2015. Origin of termite eusociality: trophallaxis integrates the social, nutritional, and microbial environments. Ecol. Entomol. 40, 323-335. (10.1111/een.12197) DOI
Bucek A, Šobotník J, He S, Shi M, McMahon DP, Holmes EC, Roisin Y, Lo N, Bourguignon T. 2019. Evolution of termite symbiosis informed by transcriptome-based phylogenies. Curr. Biol. 29, 3728-3734. (10.1016/j.cub.2019.08.076) PubMed DOI
Hernández LJ, Riessberger-Gallé U, Crailsheim K, Schuehly W. 2017. Cuticular hydrocarbon cues of immune-challenged workers elicit immune activation in honeybee queens. Mol. Ecol. 26, 3062-3073. (10.1111/mec.14086) PubMed DOI
Pradeu T. 2019. Philosophy of biology: immunology and individuality. Elife 8, e47384. (10.7554/eLife.47384) PubMed DOI PMC
Zhang ZT, Zhu SY. 2009. Drosomycin, an essential component of antifungal defence in Drosophila. Insect. Mol. Biol. 18, 549-556. (10.1111/j.1365-2583.2009.00907.x) PubMed DOI
Bulmer M, Denier D, Velenovsky J, Hamilton C. 2012. A common antifungal defense strategy in Cryptocercus woodroaches and termites. Insectes Soc. 59, 469-478. (10.1007/s00040-012-0241-y) DOI
Zelensky AN, Gready JE. 2005. The C-type lectin-like domain superfamily. FEBS J. 272, 6179-6217. (10.1111/j.1742-4658.2005.05031.x) PubMed DOI
Zhu Y, Yu X, Cheng G. 2020. Insect C-Type Lectins in Microbial Infections. In Lectin in host defense against microbial infections (ed. S-L Hsieh), pp. 129-140. Berlin, Germany: Springer.
Xia X, You M, Rao X.-J, Yu X.-Q. 2018. Insect C-type lectins in innate immunity. Dev. Comp. Immunol. 83, 70-79. (10.1016/j.dci.2017.11.020) PubMed DOI
Pees B, Yang W, Zárate-Potes A, Schulenburg H, Dierking K. 2016. High innate immune specificity through diversified C-type lectin-like domain proteins in invertebrates. J. Innate Immun. 8, 129-142. (10.1159/000441475) PubMed DOI PMC
Arumugam G, Sreeramulu B, Paulchamy R, Thangavel S, Sundaram J. 2017. Purification and functional characterization of lectin with phenoloxidase activity from the hemolymph of cockroach, Periplaneta americana. Arch. Insect. Biochem. Physiol. 95, e21390. (10.1002/arch.21390) PubMed DOI
Jomori T, Natori S. 1992. Function of the lipopolysaccharide-binding protein of Periplaneta americana as an opsonin. FEBS Lett. 296, 283-286. (10.1016/0014-5793(92)80305-Z) PubMed DOI
Kawasaki K, Kubo T, Natori S. 1993. A novel role of Periplaneta lectin as an opsonin to recognize 2-keto-3-deoxy octonate residues of bacterial lipopolysaccharides. Comp. Biochem. Physiol. B 106, 675-680. (10.1016/0305-0491(93)90148-X) PubMed DOI
Chen C, Durrant H, Newton R, Ratcliffe N. 1995. A study of novel lectins and their involvement in the activation of the prophenoloxidase system in Blaberus discoidalis. Biochem. J. 310, 23-31. (10.1042/bj3100023) PubMed DOI PMC
Harrison MC, et al. 2018. Expansions of key protein families in the German cockroach highlight the molecular basis of its remarkable success as a global indoor pest. J. Exp. Zool. B Mol. Dev. Evol. 330, 254-264. (10.1002/jez.b.22824) PubMed DOI PMC
Jomori T, Kubo T, Natori S. 1990. Purification and characterization of lipopolysaccharide-binding protein from hemolymph of American cockroach Periplaneta americana. FEBS J. 190, 201-206. (10.1111/j.1432-1033.1990.tb15565.x) PubMed DOI
Jomori T, Natori S. 1991. Molecular cloning of cDNA for lipopolysaccharide-binding protein from the hemolymph of the American cockroach, Periplaneta americana: similarity of the protein with animal lectins and its acute phase expression. J. Biol. Chem. 266, 13 318-13 323. (10.1016/S0021-9258(18)98841-1) PubMed DOI
Donovan S, Jones D, Sands W, Eggleton P. 2000. Morphological phylogenetics of termites (Isoptera). Biol J. Linn. Soc. 70, 467-513. (10.1111/j.1095-8312.2000.tb01235.x) DOI
López-Uribe MM, Sconiers WB, Frank SD, Dunn RR, Tarpy DR. 2016. Reduced cellular immune response in social insect lineages. Biol. Lett. 12, 20150984. (10.1098/rsbl.2015.0984) PubMed DOI PMC
Grozinger CM, Fan Y, Hoover SE, Winston ML. 2007. Genome-wide analysis reveals differences in brain gene expression patterns associated with caste and reproductive status in honey bees (Apis mellifera). Mol. Ecol. 16, 4837-4848. (10.1111/j.1365-294X.2007.03545.x) PubMed DOI
Graeff J, Jemielity S, Parker JD, Parker KM, Keller L. 2007. Differential gene expression between adult queens and workers in the ant Lasius niger. Mol. Ecol. 16, 675-683. (10.1111/j.1365-294X.2007.03162.x) PubMed DOI
Quque M, Benhaim-Delarbre M, Deneubourg J-L, Sueur C, Criscuolo F, Bertile F. 2019. Division of labour in the black garden ant (Lasius niger) leads to three distinct proteomes. J. Insect. Physiol. 117, 103907. (10.1016/j.jinsphys.2019.103907) PubMed DOI
Gao Q, Thompson G. 2015. Social context affects immune gene expression in a subterranean termite. Insectes Soc. 62, 167-170. (10.1007/s00040-015-0389-3) DOI
Inward DJ, Vogler AP, Eggleton P. 2007. A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Mol. Phylogenet. Evol. 44, 953-967. (10.1016/j.ympev.2007.05.014) PubMed DOI
Rosengaus R, Jordan C, Lefebvre M, Traniello J. 1999. Pathogen alarm behavior in a termite: a new form of communication in social insects. Naturwissenschaften 86, 544-548. (10.1007/s001140050672) PubMed DOI
Ohkuma M, Noda S, Hongoh Y, Nalepa CA, Inoue T. 2008. Inheritance and diversification of symbiotic trichonymphid flagellates from a common ancestor of termites and the cockroach Cryptocercus. Phil. Trans. R Soc. B 276, 239-245. (10.1098/rspb.2008.1094) PubMed DOI PMC
Grabherr MG, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644-652. (10.1038/nbt.1883) PubMed DOI PMC
Emms DM, Kelly S. 2015. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 16, 157. (10.1186/s13059-015-0721-2) PubMed DOI PMC
Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312-1313. (10.1093/bioinformatics/btu033) PubMed DOI PMC
Aberer AJ, Kobert K, Stamatakis A. 2014. ExaBayes: massively parallel Bayesian tree inference for the whole-genome era. Mol. Biol. Evol. 31, 2553-2556. (10.1093/molbev/msu236) PubMed DOI PMC
Lartillot N, Philippe H. 2004. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol. Biol. Evol. 21, 1095-1109. (10.1093/molbev/msh112) PubMed DOI
Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59. (10.1038/nmeth.3176) PubMed DOI
Sackton TB, Lazzaro BP, Clark AG. 2017. Rapid expansion of immune-related gene families in the house fly, Musca domestica. Mol. Biol. Evol. 34, 857-872. (10.1093/molbev/msw285) PubMed DOI PMC
Keck F, Rimet F, Bouchez A, Franc A. 2016. phylosignal: an R package to measure, test, and explore the phylogenetic signal. Ecol. Evol. 6, 2774-2780. (10.1002/ece3.2051) PubMed DOI PMC
De Bie T, Cristianini N, Demuth JP, Hahn MW.. 2006. CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22, 1269-1271. (10.1093/bioinformatics/btl097) PubMed DOI
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. 2017. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417. (10.1038/nmeth.4197) PubMed DOI PMC
Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550. (10.1186/s13059-014-0550-8) PubMed DOI PMC
Supek F, Bošnjak M, Škunca N, Šmuc T. 2011. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6, e21800. (10.1371/journal.pone.0021800) PubMed DOI PMC
He S, et al. . 2020. Dataset from: Evidence for reduced immune gene diversity and activity during the evolution of termites. Dryad Digital Repository. (10.5061/dryad.nzs7h44qp) PubMed DOI PMC
Evidence for reduced immune gene diversity and activity during the evolution of termites