Real-time feedback control of the impurity emission front in tokamak divertor plasmas

. 2021 Feb 17 ; 12 (1) : 1105. [epub] 20210217

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33597525
Odkazy

PubMed 33597525
PubMed Central PMC7889616
DOI 10.1038/s41467-021-21268-3
PII: 10.1038/s41467-021-21268-3
Knihovny.cz E-zdroje

In magnetic confinement thermonuclear fusion the exhaust of heat and particles from the core remains a major challenge. Heat and particles leaving the core are transported via open magnetic field lines to a region of the reactor wall, called the divertor. Unabated, the heat and particle fluxes may become intolerable and damage the divertor. Controlled 'plasma detachment', a regime characterized by both a large reduction in plasma pressure and temperature at the divertor target, is required to reduce fluxes onto the divertor. Here we report a systematic approach towards achieving this critical need through feedback control of impurity emission front locations and its experimental demonstration. Our approach comprises a combination of real-time plasma diagnostic utilization, dynamic characterization of the plasma in proximity to the divertor, and efficient, reliable offline feedback controller design.

Zobrazit více v PubMed

Zohm H, et al. On the physics guidelines for a tokamak DEMO. Nucl. Fusion. 2013;53:073019. doi: 10.1088/0029-5515/53/7/073019. DOI

Kallenbach A, et al. Impurity seeding for tokamak power exhaust: from present devices via ITER to DEMO. Plasma Phys. Controlled Fusion. 2013;55:124041. doi: 10.1088/0741-3335/55/12/124041. DOI

Loarte A, Neu R. Power exhaust in tokamaks and scenario integration issues. Fusion Eng. Des. 2017;122:256–273. doi: 10.1016/j.fusengdes.2017.06.024. DOI

Loarte A, et al. Progress in the ITER Physics Basis Chapter 4: power and particle control. Nucl. Fusion. 2007;47:S203–S263. doi: 10.1088/0029-5515/47/6/S04. DOI

Pitts RA, et al. Physics basis for the first ITER tungsten divertor. Nucl. Mater. Energy. 2019;20:100696. doi: 10.1016/j.nme.2019.100696. DOI

Lipschultz B, Parra FI, Hutchinson IH. Sensitivity of detachment extent to magnetic configuration and external parameters. Nucl. Fusion. 2016;56:056007. doi: 10.1088/0029-5515/56/5/056007. DOI

Goetz JA, et al. High confinement dissipative divertor operation on Alcator C-Mod. Phys. Plasmas. 1999;6:1899–1906. doi: 10.1063/1.873447. DOI

Gunn JP, et al. Surface heat loads on the ITER divertor vertical targets. Nucl. Fusion. 2017;57:046025. doi: 10.1088/1741-4326/aa5e2a. DOI

Wesson, J. Tokamaks (Oxford University Press, 2004).

Panek R, et al. Conceptual design of the COMPASS upgrade tokamak. Fusion Eng. Des. 2017;123:11–16. doi: 10.1016/j.fusengdes.2017.03.002. DOI

Albanese R, Pizzuto A. The DTT proposal. A tokamak facility to address exhaust challenges for DEMO: introduction and executive summary. Fusion Eng. Des. 2017;122:274–284. doi: 10.1016/j.fusengdes.2016.12.030. DOI

Romanelli, F. et al. Fusion Electricity: a roadmap to the realisation of fusion energy. EFDA. https://www.euro-fusion.org/wpcms/wp-content/uploads/2013/01/JG12.356-web.pdf (2012).

Kallenbach A, et al. Optimized tokamak power exhaust with double radiative feedback in ASDEX Upgrade. Nucl. Fusion. 2012;52:122003. doi: 10.1088/0029-5515/52/12/122003. DOI

Guillemaut C, et al. Real-time control of divertor detachment in H-mode with impurity seeding using Langmuir probe feedback in JET-ITER- like wall. Plasma Phys. Controlled Fusion. 2017;59:045001. doi: 10.1088/1361-6587/aa5951. DOI

Brunner D, et al. Feedback system for divertor impurity seeding based on real-time measurements of surface heat flux in the Alcator C-Mod tokamak. Rev. Sci. Instrum. 2016;87:023504. doi: 10.1063/1.4941047. PubMed DOI

Kolemen E, et al. Heat flux management via advanced magnetic divertor configurations and divertor detachment. J. Nucl. Mater. 2015;463:1186–1190. doi: 10.1016/j.jnucmat.2014.11.099. DOI

Kallenbach A, et al. Partial detachment of high power discharges in ASDEX Upgrade. Nucl. Fusion. 2015;55:053026. doi: 10.1088/0029-5515/55/5/053026. DOI

Eldon D, et al. Advances in radiated power control at DIII-D. Nucl. Mater. Energy. 2019;18:285–290. doi: 10.1016/j.nme.2019.01.010. DOI

Bernert M, et al. X-Point radiation, its control and an ELM suppressed radiating regime at the ASDEX Upgrade tokamak. Nucl. Fusion. 2020;61:024001. doi: 10.1088/1741-4326/abc936. DOI

Xu GS, et al. Divertor impurity seeding with a new feedback control scheme for maintaining good core confinement in grassy-ELM H-mode regime with tungsten monoblock divertor in EAST. Nucl. Fusion. 2020;60:086001. doi: 10.1088/1741-4326/ab91fa. DOI

Wu K, et al. Radiative feedback control on EAST. Fusion Eng. Des. 2018;129:291–293. doi: 10.1016/j.fusengdes.2017.12.033. DOI

Coda S, et al. Physics research on the TCV tokamak facility: from conventional to alternative scenarios and beyond. Nucl. Fusion. 2019;59:112023. doi: 10.1088/1741-4326/ab25cb. DOI

Perek A, et al. MANTIS: a real-time quantitative multispectral imaging system for fusion plasmas. Rev. Sci. Instrum. 2019;90:123514. doi: 10.1063/1.5115569. PubMed DOI

Doyle EJ, et al. Progress in the ITER physics basis chapter 2: plasma confinement and transport. Nucl. Fusion. 2007;47:S18–S127. doi: 10.1088/0029-5515/47/6/S02. DOI

Lipschultz B, Labombard B, Terry JL, Boswell C, Hutchinson IH. Divertor physics research on alcator C-Mod. Fusion Sci. Technol. 2007;51:369–389. doi: 10.13182/FST07-A1428. DOI

Reimerdes H, et al. TCV experiments towards the development of a plasma exhaust solution. Nucl. Fusion. 2017;57:126007. doi: 10.1088/1741-4326/aa82c2. DOI

Smolders A, et al. Comparison of high density and nitrogen seeded detachment using SOLPS-ITER simulations of the TCV tokamak. Plasma Phys. Controlled Fusion. 2020;62:125006. doi: 10.1088/1361-6587/abbcc5. DOI

Anand H, et al. Distributed digital real-time control system for the TCV tokamak and its applications. Nucl. Fusion. 2017;57:056005. doi: 10.1088/1741-4326/aa6120. DOI

Ravenbergen T, et al. Development of a real-time algorithm for detection of the divertor detachment radiation front using multi-spectral imaging. Nucl. Fusion. 2020;60:066017.

Theiler C, et al. Results from recent detachment experiments in alternative divertor configurations on TCV. Nucl. Fusion. 2017;57:072008. doi: 10.1088/1741-4326/aa5fb7. DOI

Harrison JR, et al. Detachment evolution on the TCV tokamak. Nucl. Mater. Energy. 2017;12:1071–1076. doi: 10.1016/j.nme.2016.10.020. DOI

Harrison JR, et al. Progress toward divertor detachment on TCV within H-mode operating parameters. Plasma Phys. Controlled Fusion. 2019;61:065024. doi: 10.1088/1361-6587/ab140e. DOI

Carr M, et al. Description of complex viewing geometries of fusion tomography diagnostics by ray-tracing. Rev. Sci. Instrum. 2018;89:083506. doi: 10.1063/1.5031087. PubMed DOI

Skogestad, S. & Postlethwaite, I. Multivariable Feedback Control 2nd edn, (Wiley, 2005).

Pintelon, R. & Schoukens, J. System Identification, a Frequency Domain Approach (IEEE Press, 2001).

Leonard A. Plasma detachment in divertor tokamaks. Plasma Phys. Controlled Fusion. 2018;60:044001. doi: 10.1088/1361-6587/aaa7a9. DOI

Krasheninnikov SI, Kukushkin AS. Physics of ultimate detachment of a tokamak divertor plasma. J. Plasma Phys. 2017;83:155830501. doi: 10.1017/S0022377817000654. DOI

Burell, K. H., Ahlgren, D. R. & Crosbie, J. General Atomics Fast Gas injection System Manuel. Tech. Rep., General Atomics, San Diego, USA (1997).

Mallat, S. A wavelet tour of signal processing: the sparse way 3rd edn, (Academic Press, Cambridge, 2008).

Schoukens J, Godfrey K, Schoukens M. Nonparametric Data-Driven Modeling of Linear Systems. IEEE Control Syst. Mag. 2018;38:49–88. doi: 10.1109/MCS.2018.2830080. DOI

Labit B, et al. Dependence on plasma shape and plasma fueling for small edge-localized mode regimes in TCV and ASDEX Upgrade. Nucl. Fusion. 2019;59:086020. doi: 10.1088/1741-4326/ab2211. DOI

van Berkel M, et al. Correcting for non-periodic behaviour in perturbative experiments : application to heat pulse propagation and modulated gas-puff experiments. Plasma Phys. Controlled Fusion. 2020;62:094001. doi: 10.1088/1361-6587/ab9eaa. DOI

Ravenbergen T, et al. Density Control in ITER: an Iterative Learning Control and Robust Control approach. Nucl. Fusion. 2018;58:016048. doi: 10.1088/1741-4326/aa95ce. DOI

Söderström, T. & Bhikkaji, B. Reduced Order Models for Diffusion Systems via Collocation Methods. In 12th IFAC Symposium on System Identification 977–982 (Elsevier, 2000).

Curtain R, Morris K. Transfer functions of distributed parameter systems: a tutorial. Automatica. 2009;45:1101–1116. doi: 10.1016/j.automatica.2009.01.008. DOI

Hofmann F, Tonetti G. Tokamak equilibrium reconstruction using Faraday rotation measurements. Nucl. Fusion. 1988;28:1871. doi: 10.1088/0029-5515/28/10/014. DOI

Reinke ML, et al. Radiative heat exhaust in Alcator C-Mod I-mode plasmas. Nucl. Fusion. 2019;59:046018. doi: 10.1088/1741-4326/ab04cf. DOI

Lipschultz B, et al. The role of particle sinks and sources in Alcator C-Mod detached divertor discharges. Phys. Plasmas. 1999;6:1907–1916. doi: 10.1063/1.873448. DOI

Eldon D, et al. Controlling marginally detached divertor plasmas. Nucl. Fusion. 2017;57:066039. doi: 10.1088/1741-4326/aa6b16. DOI

Loarer T, et al. Gas balance and fuel retention in fusion devices. Nucl. Fusion. 2007;47:1112–1120. doi: 10.1088/0029-5515/47/9/007. DOI

Harrison JR, et al. Overview of new MAST physics in anticipation of first results from MAST Upgrade. Nucl. Fusion. 2019;59:112011. doi: 10.1088/1741-4326/ab121c. DOI

Silburn, S. et al. Calcam, Python tools for spatial calibration of camera diagnostics. Zenodo. 10.5281/zenodo.4308088 (2018)

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Novel concept suppressing plasma heat pulses in a tokamak by fast divertor sweeping

. 2022 Oct 11 ; 12 (1) : 17013. [epub] 20221011

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...