Photoacoustic removal of Enterococcus faecalis biofilms from titanium surface with an Er:YAG laser using super short pulses
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Lifelong Learning Programme/ERASMUS
European Comission
research core funding P4-0116
Javna Agencija za Raziskovalno Dejavnost RS
PubMed
33619682
DOI
10.1007/s10103-021-03265-6
PII: 10.1007/s10103-021-03265-6
Knihovny.cz E-zdroje
- Klíčová slova
- Biofilm control, Dental implants, Enterococcus faecalis, Er:YAG laser, Er:YAG-SSP, Photoacoustic irrigation, Titanium surface,
- MeSH
- biofilmy MeSH
- Enterococcus faecalis MeSH
- lasery pevnolátkové * terapeutické užití MeSH
- povrchové vlastnosti MeSH
- titan MeSH
- zubní implantáty * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- titan MeSH
- zubní implantáty * MeSH
Biofilms that grow on implant surfaces pose a great risk and challenge for the dental implant survival. In this work, we have applied Er:YAG photoacoustic irrigation using super short pulses (Er:YAG-SSP) to remove biofilms from the titanium surfaces in the non-contact mode. Mature Enterococcus faecalis biofilms were treated with saline solution, chlorhexidine, and hydrogen peroxide, or photoacoustically with Er:YAG-SSP for 10 or 60 s. The number of total and viable bacteria as well as biofilm surface coverage was determined prior and after different treatments. Er:YAG-SSP photoacoustic treatment significantly increases the biofilm removal rate compared to saline or chemically treated biofilms. Up to 92% of biofilm-covered surface can be cleaned in non-contact mode during 10 s without the use of abrasives or chemicals. In addition, Er:YAG-SSP photoacoustic irrigation significantly decreases the number of viable bacteria that remained on the titanium surface. Within the limitations of the present in vitro model, the ER:YAG-SSP seems to constitute an efficient therapeutic option for quick debridement and decontamination of titanium implants without using abrasives or chemicals.
Zobrazit více v PubMed
Özcan M, Hämmerle C (2012) Titanium as a reconstruction and implant material in dentistry: advantages and pitfalls. Materials (Basel) 5(9):1528–1545 PMC
Lang NP, Pjetursson BE, Tan K, Bragger U, Egger M, Zwahlen M (2004) A systematic review of the survival and complication rates of fixed partial dentures (FDPs) after an observation period of at least 5 years II. Combined tooth-implant supported FDPs. Clin Oral Implants Res 15:643–653 PubMed
Zitzmann NU, Berglundh T (2008) Definition and prevalence of peri-implant diseases. J Clin Periodontol 35(8):286–291 PubMed
Keeve PL, Koo KT, Ramanauskaite A, Romanos G, Schwarz F, Sculean A, Khoury F (2019) Surgical treatment of periimplantitis with non-augmentative techniques. Implant Den 28(2):177–186
Figuero E, Graziani F, Sanz I, Herrera D, Sanz M (2014) Management of peri-implant mucositis and peri-implantitis. Periodontol 66(1):255–273
Froum SJ, Dagba AS, Shi Y, Perez-Asenjo A, Rosen PS, Wang WC (2016) Successful surgical protocols in the treatment of peri-implantitis: a narrative review of the literature. Implant Dent 25(3):416–426 PubMed
Raikar S, Talukdar P, Kumari S, Panda SK, Oommen VM, Prasad A (2017) Factors affecting the survival rate of dental implants: a retrospective study. J Int Soc Prev Commun Dent 7(6):351–355
Lang NP, Wilson TG, Corbet EF (2000) Biological complications with dental implants: their prevention, diagnosis and treatment. Clin Oral Implants Res 11(Suppl 1):146–155 PubMed
Mombelli A, van Oosten MA, Schurch E Jr, Land NP (1987) The microbiota associated with successful or failing osseointegrated titanium implants. Oral Microbiol Immunol 2(4):145–151 PubMed
Pontoriero R, Tonelli MP, Carnevale G, Mombelli A, Nyman SR, Lang NP (1994) Experimentally induced peri-implant mucositis. A clinical study in humans. Clin Oral Implants Res 5(4):254–259 PubMed
Mombelli A, Décaillet F (2011) The characteristics of biofilms in peri-implant disease. J Clin Periodontol 38(Suppl 11):203–213 PubMed
Belibasakis GN (2014) Microbiological and immuno-pathological aspects of peri-implant diseases. Arch Oral Biol 59(1):66–72 PubMed
Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE (2005) Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43(11):5721–5732 PubMed PMC
Daubert DM, Weinstein BF (2019) Biofilm as a risk factor in implant treatment. Periodontol 81(1):29–40
Flanagan D (2017) Enterococcus faecalis and dental implants. J Oral Implantol 43(1):8–11 PubMed
Cai Z, Li Y, Wang Y, Chen S, Jiang S, Ge H, Lei L, Huang X (2019) Disinfect Porphyromonas gingivalis biofilm on titanium surface with combined application of chlorhexidine and antimicrobial photodynamic therapy. Photochem Photobiol 95(3):839–845 PubMed
Renvert S, Roos-Jansåker AM, Claffey N (2008) Non-surgical treatment of peri-implant mucositis and peri-implantitis: a literature review. J Clin Periodontol 35(8 Suppl):305–315 PubMed
Sahrmann P, Ronay V, Hofer D, Attin T, Jung RE, Schmidlin PR (2015) In vitro cleaning potential of three different implant debridement methods. Clin Oral Implants Res 26(3):314–319 PubMed
Ronay V, Merlini A, Attin T, Schmidlin PR, Sahrmann P (2017) In vitro cleaning potential of three implant debridement methods. Simulation of the non-surgical approach. Clin Oral Implants Res 28(2):151–155 PubMed
Ntrouka V, Hoogenkamp M, Zaura E, van der Weijden F (2011) The effect of chemotherapeutic agents on titanium-adherent biofilms. Clin Oral Implants Res 22(11):1227–1234 PubMed
Schlee M, Rathe F, Brodbeck U, Ratka C, Weigl P, Zipprich H (2019) Treatment of peri-implantitis-electrolytic cleaning versus mechanical and electrolytic cleaning-a randomized controlled clinical trial-six-month results. J Clin Med 8(11):1909 PMC
Haapasalo M, Shen Y, Wang Z, Gao Y (2014) Irrigation in endodontics. Br Dent J 216(6):299–303 PubMed
Al Shahrani M, DiVito E, Hughes CV, Nathanson D, Huang GT (2014) Enhanced removal of Enterococcus faecalis biofilms in the root canal using sodium hypochlorite plus photon-induced photoacoustic streaming: an in vitro study. Photomed Laser Surg 32(5):260–266 PubMed PMC
Ozses Ozkaya B, Gulsahi K, Ungor M, Gocmen JS (2017) A comparison of Er:YAG laser with photon-initiated photoacoustic streaming, Nd:YAG laser, and conventional irrigation on the eradication of root dentinal tubule infection by Enterococcus faecalis biofilms: a scanning electron microscopy study. Scanning 2017:6215482
Jaramillo DE, Aguilar E, Arias A, Ordinola-Zapata R, Aprecio RM, Ibarrola JL (2016) Root canal disinfection comparing conventional irrigation vs photon-induced photoacoustic streaming (PIPS) using a buffered 0.5 % sodium hypochlorite solution. Evid Based Endod 1:6
Matsumoto H, Yoshimine Y, Akamine A (2011) Visualization of irrigant flow and cavitation induced by Er:YAG laser within a root canal model. J Endod 37(6):839–843 PubMed
Koch JD, Jaramillo DE, DiVito E, Peters OA (2016) Irrigant flow during photon-induced photoacoustic streaming (PIPS) using particle image velocimetry (PIV). Clin Oral Investig 20(2):381–386 PubMed
Kurzmann C, Meire MA, Lettner S, Farmakis ETR, Moritz A, De Moor RJG (2020) The efficacy of ultrasonic and PIPS (photon-induced acoustic streaming) irrigation to remove artificially placed dentine debris plugs out of an artificial and natural root model. Lasers Med Sci 35(3):719–728 PubMed
VON Eiff C, Overbeck J, Haupt G, Herrmann M, Winckler S, Richter KD, Peters G, Spiegel HU (2000) Bactericidal effect of extracorporeal shock waves on Staphylococcus aureus. J Med Microbiol 49(8):709–712 PubMed
Arrojo S, Benito Y, Tarifa AM (2008) A parametrical study of disinfection with hydrodynamic cavitation. Ultrason Sonochem 15(5):903–908 PubMed
Gregorcic P, Lukac N, Možina J, Jezeršek M (2016) In vitro study of the erbium:yttrium aluminum garnet laser cleaning of root canal by the use of shadow photography. J Biomed Opt 21(1):15008 PubMed
Joyce E, Phull SS, Lorimer JP, Mason TJ (2003) The development and evaluation of ultrasound for the treatment of bacterial suspensions. A study of frequency, power and sonication time on cultured Bacillus species. Ultrason Sonochem 10(6):315–318 PubMed
Auty MA, Gardiner GE, McBrearty SJ, O'Sullivan EO, Mulvihill DM, Collins JK, Fitzgerald GF, Stanton C, Ross RP (2001) Direct in situ viability assessment of bacteria in probiotic dairy products using viability staining in conjunction with confocal scanning laser microscopy. Appl Environ Microbiol 67(1):420–425 PubMed PMC
Gubbi P, Wojtisek T (2018) The role of titanium in implant dentistry. Titanium in medical and dental applications, Woodhead Publishing, 5.2, pp 505–529
Ordinola-Zapata R, Bramante CM, Aprecio RM, Handysides R, Jaramillo DE (2014) Biofilm removal by 6 % sodium hypochlorite activated by different irrigation techniques. Int Endod J 47(7):659–666 PubMed
Olivi G, DiVito E, Peters O, Kaitsas V, Angiero F, Signore A, Benedicenti S (2014) Disinfection efficacy of photon-induced photoacoustic streaming on root canals infected with Enterococcus faecalis: an ex vivo study. J Am Dent Assoc 145(8):843–848 PubMed
Akcay M, Arslan H, Mese M, Durmus N, Capar ID (2017) Effect of photon-initiated photoacoustic streaming, passive ultrasonic, and sonic irrigation techniques on dentinal tubule penetration of irrigation solution: a confocal microscopic study. Clin Oral Investig 21(7):2205–2212 PubMed
Mohmmed SA, Vianna ME, Penny MR, Hilton ST, Mordan NJ, Knowles JC (2018) Investigations into in situ Enterococcus faecalis biofilm removal by passive and active sodium hypochlorite irrigation delivered into the lateral canal of a simulated root canal model. Int Endod J 51(6):649–662 PubMed
Spencer H, Ike V, Brennan P (2007) Review: the use of sodium hypochlorite in endodontics—potential complications and their management. Br Dent J 202:555–559 PubMed
Lukac N, Zadravec J, Gregorcic P, Lukac M, Jezeršek M (2016) Wavelength dependence of photon-induced photoacoustic streaming technique for root canal irrigation. J Biomed Opt 21(7):75007 PubMed
Gregorcic P, Jezersek M, Mozina J (2012) Optodynamic energy-conversion efficiency during an Er:YAG-laser-pulse delivery into a liquid through different fiber-tip geometries. J Biomed Opt 17(7):075006 PubMed
Sánchez Pérez JA, Rodríguez Porcel EM, Casas López JL, Fernández Sevilla JM, Chisti Y (2006) Shear rate in stirred tank and bubble column bioreactors. Chem Eng J 11:124 (1-3)
Boks NP, Norde W, Van der Mei HC, Busscher HJ (2008) Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces. Microbiology (Reading) 154(10):3122–3133
Saunders KA, Greenman J (2000) The formation of mixed culture biofilms of oral species along a gradient of shear stress. J Appl Microbiol 89(4):564–572 PubMed
Simunič U, Pipp P, Dular M, Stopar D (2020) The limitations of hydrodynamic removal of biofilms from the dead-ends in a model drinking water distribution system. Water Res 178:115838 PubMed
Han Q, Jiang Y, Brandt BW, Yang J, Chen Y, Buijs MJ, Crielaard W, Cheng L, Deng D (2019) Regrowth of microcosm biofilms on titanium surfaces after various antimicrobial treatments. Front Microbiol 10:2693 PubMed PMC
Chin MY, Sandham A, de Vries J, van der Mei HC, Busscher HJ (2007) Biofilm formation on surface characterized micro-implants for skeletal anchorage in orthodontics. Biomaterials 28(11):2032–2040 PubMed
Wiedmer D, Petersen FC, Lönn-Stensrud J, Tiainen H (2017) Antibacterial effect of hydrogen peroxide-titanium dioxide suspensions in the decontamination of rough titanium surfaces. Biofouling 33(6):451–459 PubMed
Olmedo GM, Grillo-Puertas M, Cerioni L, Rapisarda VA, Volentini SI (2015) Removal of pathogenic bacterial biofilms by combinations of oxidizing compounds. Can J Microbiol 61(5):351–356 PubMed
Christensen B, Trønnes H, Vollan K, Smidsrød O, Bakke R (1990) Biofilm removal by low concentration of hydrogen peroxide. Biofouling 2:165–175
Hympánová M, Terlep S, Markova A, Prchal L, Dogsa I, Pulkrábková L, Benkova M, Marek J, Stopar D (2020) The antibacterial effects of new N-alkylpyridinium salts on planktonic and biofilm bacteria. Front Microbiol 11. https://doi.org/10.3389/fmicb.2020.573951
Jezeršek M, Lukač N, Lukač M (2020) Measurement of simulated debris removal rates in an artificial root canal to optimize laser-activated irrigation parameters. Lasers Surg Med. https://doi.org/10.1002/lsm.23297
Lukač M, Lukač N, Jezeršek M (2020) Characteristics of bubble oscillations during laser-activated irrigation of root canals and method of improvement. Lasers Surg Med. https://doi.org/10.1002/lsm.23226