Job Strain and Trajectories of Cognitive Change Before and After Retirement
Language English Country United States Media print
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
R01 AG008724
NIA NIH HHS - United States
AG04563
NIA NIH HHS - United States
PubMed
33624114
PubMed Central
PMC8363035
DOI
10.1093/geronb/gbab033
PII: 6148864
Knihovny.cz E-resources
- Keywords
- Cognitive aging, Multiple cognitive domains, Postretirement change, Preretirement change, Work-related stress,
- MeSH
- Time Factors MeSH
- Retirement psychology MeSH
- Cognition * MeSH
- Cognitive Aging MeSH
- Middle Aged MeSH
- Humans MeSH
- Follow-Up Studies MeSH
- Occupational Stress * MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
OBJECTIVES: We examined associations between job strain and trajectories of change in cognitive functioning (general cognitive ability plus verbal, spatial, memory, and speed domains) before and after retirement. METHODS: Data on indicators of job strain, retirement age, and cognitive factors were available from 307 members of the Swedish Adoption/Twin Study of Aging. Participants were followed up for up to 27 years (mean = 15.4, SD = 8.5). RESULTS: In growth curve analyses controlling for age, sex, education, depressive symptoms, cardiovascular health, and twinness, greater job strain was associated with general cognitive ability (estimate = -1.33, p = .002), worse memory (estimate = -1.22, p = .007), speed (estimate = -1.11, p = .012), and spatial ability (estimate = -0.96, p = .043) at retirement. Greater job strain was also associated with less improvement in general cognitive ability before retirement and a somewhat slower decline after retirement. The sex-stratified analyses showed that the smaller gains of general cognitive ability before retirement (estimate = -1.09, p = .005) were only observed in women. Domain-specific analyses revealed that greater job strain was associated with less improvement in spatial (estimate = -1.35, p = .010) and verbal (estimate = -0.64, p = .047) ability before retirement in women and a slower decline in memory after retirement in women (estimate = 0.85, p = .008) and men (estimate = 1.12, p = .013). Neither preretirement nor postretirement speed was affected significantly by job strain. DISCUSSION: Greater job strain may have a negative influence on overall cognitive functioning prior to and at retirement, while interrupting exposure to job strain (postretirement) may slow the rate of cognitive aging. Reducing the level of stress at work should be seen as a potential target for intervention to improve cognitive aging outcomes.
Aging Research Center Karolinska Institutet Stockholm University Stockholm Sweden
Department of Medical Epidemiology and Biostatistics Karolinska Institutet Stockholm Sweden
Department of Psychology Indiana University Southeast New Albany USA
Department of Psychology University of Alabama at Birmingham USA
Department of Psychology University of Southern California Los Angeles USA
Institute for Gerontology Jönköping University Jönköping Sweden
School of Aging Studies University of South Florida Tampa USA
Stress Research Institute Stockholm University Stockholm Sweden
See more in PubMed
Agbenyikey, W., Karasek, R., Cifuentes, M., Wolf, P. A., Seshadri, S., Taylor, J. A., Beiser, A. S., & Au, R. (2015). Job strain and cognitive decline: A prospective study of the Framingham offspring cohort. The International Journal of Occupational and Environmental Medicine, 6(2), 79–94. doi:10.15171/ijoem.2015.534 PubMed DOI PMC
Andel, R., Infurna, F. J., Hahn Rickenbach, E. A., Crowe, M., Marchiondo, L., & Fisher, G. G. (2015). Job strain and trajectories of change in episodic memory before and after retirement: Results from the Health and Retirement Study. Journal of Epidemiology and Community Health, 69(5), 442–446. doi:10.1136/jech-2014-204754 PubMed DOI
Blazer, D., & Williams, C. D. (1980). Epidemiology of dysphoria and depression in an elderly population. The American Journal of Psychiatry, 137(4), 439–444. doi:10.1176/ajp.137.4.439 PubMed DOI
Bonsang, E., Adam, S., & Perelman, S. (2012). Does retirement affect cognitive functioning? Journal of Health Economics, 31(3), 490–501. doi:10.1016/j.jhealeco.2012.03.005 PubMed DOI
Coe, N. B., von Gaudecker H.‐M., Lindeboom, M., & Maurer, J. (2012). The effect of retirement on cognitive functioning. Health Economics, 21(8), 913–927. doi:10.1002/hec.1771 PubMed DOI
Elovainio, M., Ferrie, J. E., Singh-Manoux, A., Gimeno, D., De Vogli, R., Shipley, M. J., Vahtera, J., Brunner, E. J., Marmot, M. G., & Kivimäki, M. (2009). Cumulative exposure to high-strain and active jobs as predictors of cognitive function: The Whitehall II study. Occupational and Environmental Medicine, 66(1), 32–37. doi:10.1136/oem.2008.039305 PubMed DOI PMC
Elovainio, M., Forma, P., Kivimäki, M., Sinervo, T., Sutinen, R., & Laine, M. (2005). Job demands and job control as correlates of early retirement thoughts in Finnish social and health care employees. Work & Stress, 19(1), 84–92. doi:10.1080/02678370500084623 DOI
Finch, C. E., & Seeman, T. E. (1999). Stress theories of aging. In Bengston V. L., & Schaie K. W. (Eds.), Handbook of theories of aging (pp. 81–97). Springer Publishing Company, Inc.
Finkel, D., & Pedersen, N. L. (2004). Processing speed and longitudinal trajectories of change for cognitive abilities: The Swedish Adoption/Twin Study of Aging. Aging, Neuropsychology, and Cognition, 11, 325–345. doi:10.1080/13825580490511152 DOI
Finkel, D., Reynolds, C. A., Berg, S., & Pedersen, N. L. (2006). Surprising lack of sex differences in normal cognitive aging in twins. International Journal of Aging & Human Development, 62(4), 335–357. doi:10.2190/C39X-9QHY-49DM-X9GJ PubMed DOI
Finkel, D., Reynolds, C. A., McArdle, J. J., & Pedersen, N. L. (2005). The longitudinal relationship between processing speed and cognitive ability: Genetic and environmental influences. Behavior Genetics, 35(5), 535–549. doi:10.1007/s10519-005-3281-5 PubMed DOI
Fisher, G. G., Chaffee, D. S., Tetrick, L. E., Davalos, D. B., & Potter, G. G. (2017). Cognitive functioning, aging, and work: A review and recommendations for research and practice. Journal of Occupational Health Psychology, 22(3), 314–336. doi:10.1037/ocp0000086 PubMed DOI
Fratiglioni, L., Marseglia, A., & Dekhtyar, S. (2020). Ageing without dementia: Can stimulating psychosocial and lifestyle experiences make a difference? The Lancet. Neurology, 19(6), 533–543. doi:10.1016/S1474-4422(20)30039-9 PubMed DOI
Gatz, M., Pedersen, N. L., Berg, S., Johansson, B., Johansson, K., Mortimer, J. A., Posner, S. F., Viitanen, M., Winblad, B., & Ahlbom, A. (1997). Heritability for Alzheimer’s disease: The study of dementia in Swedish twins. The Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 52(2), 117–125. doi:10.1093/gerona/52a.2.m117 PubMed DOI
Häusser, J. A., Mojzisch, A., & Schulz-Hardt, S. (2011). Endocrinological and psychological responses to job stressors: An experimental test of the job demand–control model. Psychoneuroendocrinology, 36(7), 1021–1031. doi:10.1016/j.psyneuen.2010.12.016 PubMed DOI
Johnson, J. V., Stewart, W. F., Fredlund, P., Hall, E. M., & Theorell, T. (1990). Psychosocial job exposure matrix: An occupationally aggregated attribution system for work environment exposure characteristics. Karolinska Institutet, Department of Stress Research.
Karasek, R. (1979). Job demands, job decision, latitude, and mental strain: Implications for job redesign. Administrative Science Quarterly, 24, 285–308. doi:10.2307/2392498 DOI
Kim, E. J., Pellman, B., & Kim, J. J. (2015). Stress effects on the hippocampus: A critical review. Learning & Memory (Cold Spring Harbor, N.Y.), 22(9), 411–416. doi:10.1101/lm.037291.114 PubMed DOI PMC
Krantz, G., Berntsson, L., & Lundberg, U. (2005). Total workload, work stress and perceived symptoms in Swedish male and female white-collar employees. European Journal of Public Health, 15(2), 209–214. doi:10.1093/eurpub/cki079 PubMed DOI
Lupien, S. J., Maheu, F., Tu, M., Fiocco, A., & Schramek, T. E. (2007). The effects of stress and stress hormones on human cognition: Implications for the field of brain and cognition. Brain and Cognition, 65(3), 209–237. doi:10.1016/j.bandc.2007.02.007 PubMed DOI
Meng, A., Nexø, M. A., & Borg, V. (2017). The impact of retirement on age related cognitive decline—A systematic review. BMC Geriatrics, 17(1), 160. doi:10.1186/s12877-017-0556-7 PubMed DOI PMC
Mezuk, B., Bohnert, A. S., Ratliff, S., & Zivin, K. (2011). Job strain, depressive symptoms, and drinking behavior among older adults: Results from the health and retirement study. The Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 66(4), 426–434. doi:10.1093/geronb/gbr021 PubMed DOI PMC
Munro, C. A., Wennberg, A. M., Bienko, N., Eaton, W. W., Lyketsos, C. G., & Spira, A. P. (2019). Stressful life events and cognitive decline: Sex differences in the Baltimore Epidemiologic Catchment Area Follow-Up Study. International Journal of Geriatric Psychiatry, 34(7), 1008–1017. doi:10.1002/gps.5102 PubMed DOI PMC
Mutambudzi, M., & Javed, Z. (2016). Job strain as a risk factor for incident diabetes mellitus in middle and older age US workers. The Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 71(6), 1089–1096. doi:10.1093/geronb/gbw091 PubMed DOI
Nexø, M. A., Meng, A., & Borg, V. (2016). Can psychosocial work conditions protect against age-related cognitive decline? Results from a systematic review. Occupational and Environmental Medicine, 73(7), 487–496. doi:10.1136/oemed-2016-103550 PubMed DOI PMC
Nilsen, C., Andel, R., Darin-Mattsson, A., & Kåreholt, I. (2019). Psychosocial working conditions across working life may predict late-life physical function: A follow-up cohort study. BMC Public Health, 19(1), 1125. doi:10.1186/s12889-019-7473-y PubMed DOI PMC
Nilsen, C., Andel, R., Fors, S., Meinow, B., Darin Mattsson, A., & Kåreholt, I. (2014). Associations between work-related stress in late midlife, educational attainment, and serious health problems in old age: A longitudinal study with over 20 years of follow-up. BMC Public Health, 14, 878. doi:10.1186/1471-2458-14-878 PubMed DOI PMC
Nyberg, S. T., Fransson, E. I., Heikkilä, K., Alfredsson, L., Casini, A., Clays, E., De Bacquer, D., Dragano, N., Erbel, R., Ferrie, J. E., Hamer, M., Jöckel, K. H., Kittel, F., Knutsson, A., Ladwig, K. H., Lunau, T., Marmot, M. G., Nordin, M., Rugulies, R., … Kivimäki, M.; IPD-Work Consortium . (2013). Job strain and cardiovascular disease risk factors: Meta-analysis of individual-participant data from 47,000 men and women. PLoS One, 8(6), e67323. doi:10.1371/journal.pone.0067323 PubMed DOI PMC
Pan, K. Y., Xu, W., Mangialasche, F., Dekhtyar, S., Fratiglioni, L., & Wang, H. X. (2019). Working life psychosocial conditions in relation to late-life cognitive decline: A population-based cohort study. Journal of Alzheimer’s Disease, 67(1), 315–325. doi:10.3233/JAD-180870 PubMed DOI
Pedersen, N. L., Plomin, R., Nesselroade, J. R., & McClearn, G. E. (1992). A quantitative genetic analysis of cognitive abilities during the second half of the life span. Psychological Science, 3, 346–353. doi:10.1111/j.1467-9280.1992.tb00045.x DOI
Radley, J. J., Sisti, H. M., Hao, J., Rocher, A. B., McCall, T., Hof, P. R., McEwen, B. S., & Morrison, J. H. (2004). Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex. Neuroscience, 125(1), 1–6. doi:10.1016/j.neuroscience.2004.01.006 PubMed DOI
Rohwedder, S., & Willis, R. J. (2010). Mental retirement. The Journal of Economic Perspectives, 24(1), 119–138. doi:10.1257/jep.24.1.119 PubMed DOI PMC
Sabbath, E. L., Andel, R., Zins, M., Goldberg, M., & Berr, C. (2016). Domains of cognitive function in early old age: Which ones are predicted by pre-retirement psychosocial work characteristics? Occupational and Environmental Medicine, 73(10), 640–647. doi:10.1136/oemed-2015-103352 PubMed DOI PMC
Sapolsky, R. M. (1996). Why stress is bad for your brain. Science (New York, N.Y.), 273(5276), 749–750. doi:10.1126/science.273.5276.749 PubMed DOI
Schaie, K. W. (2005). Development influences on adult intelligence: The Seattle Longitudinal Study. Oxford University Press.
Sindi, S., Hagman, G., Håkansson, K., Kulmala, J., Nilsen, C., Kåreholt, I., Soininen, H., Solomon, A., & Kivipelto, M. (2016). Midlife work-related stress increases dementia risk in later life: The CAIDE 30-year study. The Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 72(6), 1044–1053. doi:10.1093/geronb/gbw043 PubMed DOI
Then, F. S., Luck, T., Luppa, M., Thinschmidt, M., Deckert, S., Nieuwenhuijsen, K., Seidler, A., & Riedel-Heller, S. G. (2014). Systematic review of the effect of the psychosocial working environment on cognition and dementia. Occupational and Environmental Medicine, 71(5), 358–365. doi:10.1136/oemed-2013-101760 PubMed DOI
Theorell, T. (2000). Working conditions and health. Social Epidemiology, 2, 95–118.
Theorell, T., Hammarström, A., Gustafsson, P. E., Magnusson Hanson, L., Janlert, U., & Westerlund, H. (2014). Job strain and depressive symptoms in men and women: A prospective study of the working population in Sweden. Journal of Epidemiology and Community Health, 68(1), 78–82. doi:10.1136/jech-2012-202294 PubMed DOI
Wechsler, D. (1981). Manual for the Wechsler Adult Intelligence Scale-Revised (WAIS-R). The Psychological Corporation.
Wolf, O. T. (2009). Stress and memory in humans: Twelve years of progress? Brain Research, 1293, 142–154. doi:10.1016/j.brainres.2009.04.013 PubMed DOI
Yang, B., Wang, Y., Cui, F., Huang, T., Sheng, P., Shi, T., Huang, C., Lan, Y., & Huang, Y. N. (2018). Association between insomnia and job stress: A meta-analysis. Sleep & Breathing, 22(4), 1221–1231. doi:10.1007/s11325-018-1682-y PubMed DOI