Strong impact of management regimes on rhizome biomass across Central European temperate grasslands

. 2021 Jun ; 31 (4) : e02317. [epub] 20210407

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33636021

Grantová podpora
19-14394Y Czech Science Foundation
19-13231S Czech Science Foundation
20-02901S Czech Science Foundation
RVO 67985939 Czech Academy of Sciences

Grassland ecosystems account for approximately 40% of terrestrial biomes globally. These communities are characterized by a large allocation to belowground biomass, often exceeding its aboveground counterpart. However, this biomass investment cannot be entirely attributed to the acquisitive function of roots. Grassland plants also allocate to non-acquisitive, stem-derived, belowground organs, such as rhizomes. These organs are responsible for the key plant functions of space occupancy, resprouting after damage, and seasonal rest. However, biomass investment to rhizomes has rarely been studied. Here we gathered community-level aboveground and rhizome biomass data for 52 temperate grasslands in Czech Republic (Central Europe), differing in management intensity. We found that rhizome biomass scaled linearly with aboveground biomass, and more intensive management disproportionally (negatively) affected rhizome biomass. This finding may have important implications for the persistence of temperate grassland plants and their provision of ecosystem services (e.g., soil carbon sequestration, soil stabilization) in relation to changing environments.

Zobrazit více v PubMed

Bates, D., M. Mächler, B. Bolker, and S. Walker. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67:1-48.

Bernard, J. M., and K. Fiala. 1986. Distribution and standing crop of living and dead roots in three wetland Carex species. Bulletin of the Torrey Botanical Club 113:1-5.

Dai, L., et al. 2019. Moderate grazing promotes the root biomass in Kobresia meadow on the northern Qinghai-Tibet Plateau. Ecology and Evolution 9:9395-9406.

Dalgleish, H. J., and D. C. Hartnett. 2009. The effects of fire frequency and grazing on tallgrass prairie productivity and plant composition are mediated through bud bank demography. Plant Ecology 201:411-420.

Fiala, K. 1976. Underground organs of Phragmites communis, their growth, biomass and net production. Folia Geobotanica & Phytotaxonomica 11:225-259.

Iwasa, Y., and T. Kubo. 1997. Optimal size of storage for recovery after unpredictable disturbances. Evolutionary Ecology 11:41-65.

Klimeš, L., and J. Klimešová. 2002. The effects of mowing and fertilization on carbohydrate reserves and regrowth of grasses: Do they promote plant coexistence in species-rich meadows? Evolutionary Ecology 15:363-382.

Klimešová, J., et al. 2019. Handbook of standardized protocols for collecting plant modularity traits. Perspective in Plant Ecology Evolution and Systematics 40:125485.

Klimešová, J., J. Martínková, and G. Ottaviani. 2018. Belowground plant functional ecology: Towards an integrated perspective. Functional Ecology 32:2115-2126.

Klimešová, J., O. Mudrák, J. Martínková, A. Lisner, J. Lepš, A. L. Filartiga, and G. Ottaviani. 2021a. Are belowground clonal traits good predictors of ecosystem functioning in temperate grasslands? Functional Ecology 35:787-795. https://doi.org/10.1111/1365-2435.13755

Klimešová, J., O. Mudrák, J. Martínková, A. Lisner, J. Lepš, A. L. Filartiga, and G. Ottaviani. 2021b. Data from: Are belowground clonal traits good predictors of ecosystem functioning in temperate grasslands? Dryad, data set. https://doi.org/10.5061/dryad.1ns1rn8sq

Li, P., L. Liu, J. Wang, Z. Wang, X. Wang, Y. Bai, and S. Chen. 2018. Wind erosion enhanced by land use changes significantly reduces ecosystem carbon storage and carbon sequestration potentials in semiarid grasslands. Land Degradation & Development 29:3469-3478.

Mokany, K., R. J. Raison, and A. S. Prokushkin. 2006. Critical analysis of root:shoot ratios in terrestrial biomes. Global Change Biology 12:84-96.

Niinemets, Ü. 2005. Key plant structural and allocation traits depend on relative age in the perennial herb Pimpinella saxifraga. Annals of Botany 96:323-330.

Ottaviani, G., J. Martínková, T. Herben, J. G. Pausas, and J. Klimešová. 2017. On plant modularity traits: functions and challenges. Trends in Plant Science 22:648-651.

Ottaviani, G., R. Molina-Venegas, T. Charles-Dominique, S. Chelli, G. Campetella, R. Canullo, and J. Klimešová. 2020. The neglected belowground dimension of plant dominance. Trends in Ecology and Evolution 35:763-766.

Pausas, J. G., B. B. Lamont, S. Paula, B. Appezzato-da-Glória, and A. Fidelis. 2018. Unearthing belowground bud banks in fire-prone ecosystems. New Phytologist 217:1435-1448.

Poorter, H., et al. 2015. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytologist 208:736-749.

R Core Team. 2020. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. www.R-project.org

Reich, P. B., Y. Luo, J. B. Bradford, H. Poorter, C. H. Perry, and J. Oleksyn. 2014. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots. Proceedings of National Academy of Sciences USA 111:13721-13726.

Titlyanova, A. A., I. P. Romanova, N. P. Kosykh, and N. P. Mironycheva-Tokareva. 1999. Pattern and process in above-ground and below-ground components of grassland ecosystems. Journal of Vegetation Science 10:307-320.

Vanderweide, B. L., and D. C. Hartnett. 2015. Belowground bud bank response to grazing under severe, short-term drought. Oecologia 178:795-806.

Westoby, M., and I. J. Wright. 2006. Land-plant ecology on the basis of functional traits. Trends in Ecology and Evolution 21:261-268.

Wickham, H. 2016. ggplot2: elegant graphics for data analysis. Springer-Verlag, New York, New York, USA.

Wigley, B. J., D. J. Augustine, C. Coetsee, J. Ratnam, and M. Sankaran. 2020. Grasses continue to trump trees at soil carbon sequestration following herbivore exclusion in a semiarid African savanna. Ecology 101:e03008.

Wilson, J. B. 1988. A review of evidence on the control of shoot: root ratio, in relation to models. Annals of Botany 61:433-449.

Yu, H., Y. Li, S. O. Oshunsanya, K. S. Are, Y. Genga, S. Saggar, and W. Liu. 2019. Re-introduction of light grazing reduces soil erosion and soil respiration in a converted grassland on the Loess Plateau, China. Agriculture, Ecosystems and Environment 280:43-52.

Yu, F.-H., N. Wang, W.-M. He, Y. Chu, and M. Dong. 2008. Adaptation of rhizome connections in drylands: increasing tolerance of clones to wind erosion. Annals of Botany 102:571-577.

Zhou, G., Q. Luo, Y. Chen, M. He, L. Zhou, D. Frank, Y. He, Y. Fu, B. Zhang, and X. Zhou. 2018. Effects of livestock grazing on grassland carbon storage and release override impacts associated with global climate change. Global Change Biology 25:1119-1132.

Zhang, B., G. Zhang, H. Yang, and H. Wang. 2019. Soil resistance to flowing water erosion of seven typical plant communities on steep gully slopes on the Loess Plateau of China. Catena 173:375-383.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...