• This record comes from PubMed

Biallelic loss-of-function variants in PLD1 cause congenital right-sided cardiac valve defects and neonatal cardiomyopathy

. 2021 Mar 01 ; 131 (5) : .

Language English Country United States Media print

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.

Grant support
UM1 HL098162 NHLBI NIH HHS - United States
T32 GM092714 NIGMS NIH HHS - United States
UM1 HL098123 NHLBI NIH HHS - United States
U01 HL131003 NHLBI NIH HHS - United States
R35 GM128666 NIGMS NIH HHS - United States
UM1 HL128761 NHLBI NIH HHS - United States
UM1 HL128711 NHLBI NIH HHS - United States
UM1 HL172717 NHLBI NIH HHS - United States
UM1 HL098147 NHLBI NIH HHS - United States
R01 GM084251 NIGMS NIH HHS - United States

Congenital heart disease is the most common type of birth defect, accounting for one-third of all congenital anomalies. Using whole-exome sequencing of 2718 patients with congenital heart disease and a search in GeneMatcher, we identified 30 patients from 21 unrelated families of different ancestries with biallelic phospholipase D1 (PLD1) variants who presented predominantly with congenital cardiac valve defects. We also associated recessive PLD1 variants with isolated neonatal cardiomyopathy. Furthermore, we established that p.I668F is a founder variant among Ashkenazi Jews (allele frequency of ~2%) and describe the phenotypic spectrum of PLD1-associated congenital heart defects. PLD1 missense variants were overrepresented in regions of the protein critical for catalytic activity, and, correspondingly, we observed a strong reduction in enzymatic activity for most of the mutant proteins in an enzymatic assay. Finally, we demonstrate that PLD1 inhibition decreased endothelial-mesenchymal transition, an established pivotal early step in valvulogenesis. In conclusion, our study provides a more detailed understanding of disease mechanisms and phenotypic expression associated with PLD1 loss of function.

Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam Cardiovascular Sciences

Children's Heart Centre 2nd Faculty of Medicine Charles University Prague Motol University Hospital Prague Czech Republic

Cyprus School of Molecular Medicine Nicosia Cyprus

Department of Biochemistry and Cell Biology Stony Brook University Stony Brook New York USA

Department of Cell and Developmental Biology Vanderbilt University School of Medicine Nashville Tennessee USA

Department of Clinical Genetics and

Department of Clinical Genetics The Cyprus Institute of Neurology and Genetics Nicosia Cyprus

Department of Genetics Hadassah Hebrew University Medical Center Jerusalem Israel

Department of Human Genetics Leiden University Medical Center Leiden Netherlands

Department of Human Genetics Leiden University Medical Centre Leiden Netherlands

Department of Medical Biology Amsterdam UMC Amsterdam Netherlands

Department of Obstetrics and

Department of Obstetrics Gynecology and Women's Health

Department of Pathology Isala Women and Children's Hospital Zwolle Netherlands

Department of Pediatric Cardiology Emma Children's Hospital Amsterdam UMC University of Amsterdam Amsterdam Netherlands

Department of Pediatric Cardiology Hadassah Hebrew University Medical Center Jerusalem Israel

Department of Pediatric Cardiology Leiden University Medical Centre Leiden Netherlands

Department of Pediatrics Division of Pediatric Cardiology and

Department of Pediatrics Ochsner Clinic Tulane University University of Queensland New Orleans Louisiana USA

Department of Pediatrics University of Minnesota Minneapolis Minnesota USA

Department of Pharmacological Sciences and Graduate Program in Molecular and Cellular Pharmacology Stony Brook University Stony Brook New York USA

Department of Pharmacology Vanderbilt University School of Medicine Nashville Tennessee USA

Division of Cardiology Ann and Robert H Lurie Children's Hospital of Chicago Chicago Illinois USA

Division of Genetics Birth Defects and Metabolic Disorders Ann and Robert H Lurie Children's Hospital of Chicago Chicago Illinois USA

Feinberg School of Medicine Northwestern University Chicago Illinois USA

Genetic and Rare Disease Research Division Bambino Gesù Children's Hospital IRCCS Rome Italy

Makarios Medical Centre Nicosia Cyprus

Medical Genetics Department UPMC Children's Hospital of Pittsburgh Pittsburgh Pennsylvania USA

Research Unit for Rare Diseases Department of Pediatrics and Adolescent Medicine 1st Faculty of Medicine Charles University and General University Hospital Prague Czech Republic

Service de Génétique Médicale CHU Estaing Clermont Ferrand France

Ultrasound and Fetal Medicine Diagnostic Centre Nicosia Cyprus

UMR 1231 INSERM GAD Université Bourgogne Franche Comté Dijon France

Unité Fonctionnelle d'Innovation en Diagnostique Génomique des Maladies Rares FHU TRANSLAD Centre Hospitalier Universitaire Estaing Dijon Bourgogne Dijon France

University Medical Center Groningen Department of Genetics University of Groningen Groningen Netherlands

See more in PubMed

Dolk H, et al. Congenital heart defects in Europe: prevalence and perinatal mortality, 2000 to 2005. Circulation. 2011;123(8):841–849. doi: 10.1161/CIRCULATIONAHA.110.958405. PubMed DOI

Nelson RK, Frohman MA. Physiological and pathophysiological roles for phospholipase D. J Lipid Res. 2015;56(12):2229–2237. doi: 10.1194/jlr.R059220. PubMed DOI PMC

Ta-Shma A, et al. Congenital valvular defects associated with deleterious mutations in the PLD1 gene. J Med Genet. 2017;54(4):278–286. doi: 10.1136/jmedgenet-2016-104259. PubMed DOI

Sobreira N, et al. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum Mutat. 2015;36(10):928–930. doi: 10.1002/humu.22844. PubMed DOI PMC

Bowling FZ, et al. Crystal structure of human PLD1 provides insight into activation by PI(4,5)P2 and RhoA. Nat Chem Biol. 2020;16(4):400–407. doi: 10.1038/s41589-020-0499-8. PubMed DOI PMC

Barnett JV, Desgrosellier JS. Early events in valvulogenesis: a signaling perspective. Birth Defects Res Part C Embryo Today Rev. 2003;69(1):58–72. doi: 10.1002/bdrc.10006. PubMed DOI

Vander Velde ET, et al. CONCOR, an initiative towards a national registry and DNA-bank of patients with congenital heart disease in the Netherlands: rationale, design, and first results. Eur J Epidemiol. 2005;20(6):549–557. doi: 10.1007/s10654-005-4264-9. PubMed DOI

Gelb B, et al. The Congenital Heart Disease Genetic Network Study: rationale, design, and early results. Circ Res. 2013;112(4):698–706. doi: 10.1161/CIRCRESAHA.111.300297. PubMed DOI PMC

Jin SC, et al. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat Genet. 2017;49(11):1593–1601. doi: 10.1038/ng.3970. PubMed DOI PMC

van der Palen RLF, et al. Uhl’s anomaly: clinical spectrum and pathophysiology. Int J Cardiol. 2016;209:118–121. doi: 10.1016/j.ijcard.2016.02.048. PubMed DOI

Karczewski KJ, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434–443. doi: 10.1038/s41586-020-2308-7. PubMed DOI PMC

Bray SM, et al. Signatures of founder effects, admixture, and selection in the Ashkenazi Jewish population. Proc Natl Acad Sci U S A. 2010;107(37):16222–16227. doi: 10.1073/pnas.1004381107. PubMed DOI PMC

Gandolfo LC, et al. Dating rare mutations from small samples with dense marker data. Genetics. 2014;197(4):1315–1327. doi: 10.1534/genetics.114.164616. PubMed DOI PMC

Sung TC, et al. Structural analysis of human phospholipase D1. J Biol Chem. 1999;274(6):3659–3666. doi: 10.1074/jbc.274.6.3659. PubMed DOI

Hammond SM, et al. Human ADP-ribosylation factor-activated phosphatidylcholine-specific phospholipase D defines a new and highly conserved gene family. J Biol Chem. 1995;270(50):29640–29643. doi: 10.1074/jbc.270.50.29640. PubMed DOI

Sung TC. Mutagenesis of phospholipase D defines a superfamily including a trans-Golgi viral protein required for poxvirus pathogenicity. EMBO J. 1997;16(15):4519–4530. doi: 10.1093/emboj/16.15.4519. PubMed DOI PMC

Sung TC, et al. Structural analysis of human phospholipase D1. J Biol Chem. 1999;274(6):3659–3666. doi: 10.1074/jbc.274.6.3659. PubMed DOI

Du G, et al. Regulation of phospholipase D1 subcellular cycling through coordination of multiple membrane association motifs. J Cell Biol. 2003;162(2):305–315. doi: 10.1083/jcb.200302033. PubMed DOI PMC

Vitale N, et al. Phospholipase D1: a key factor for the exocytotic machinery in neuroendocrine cells. EMBO J. 2001;20(10):2424–2434. doi: 10.1093/emboj/20.10.2424. PubMed DOI PMC

Sugars JM, et al. Fatty acylation of phospholipase D1 on cysteine residues 240 and 241 determines localization on intracellular membranes. J Biol Chem. 1999;274(42):30023–30027. doi: 10.1074/jbc.274.42.30023. PubMed DOI

DeLaughter DM, et al. What chick and mouse models have taught us about the role of the endocardium in congenital heart disease. Birth Defects Res A Clin Mol Teratol. 2011;91(6):511–525. doi: 10.1002/bdra.20809. PubMed DOI PMC

Lavieri RR, et al. Design, synthesis, and biological evaluation of halogenated N-(2-(4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]decan-8-yl)ethyl)benzamides: discovery of an isoform-selective small molecule phospholipase D2 inhibitor. J Med Chem. 2010;53(18):6706–6719. doi: 10.1021/jm100814g. PubMed DOI PMC

Bassing CH, et al. A transforming growth factor beta type I receptor that signals to activate gene expression. Science. 1994;263(5143):87–89. doi: 10.1126/science.8272871. PubMed DOI

Postma AV, et al. Mutations in the sarcomere gene MYH7 in Ebstein anomaly. Circ Cardiovasc Genet. 2011;4(1):43–50. doi: 10.1161/CIRCGENETICS.110.957985. PubMed DOI

Benson DW, et al. Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J Clin Invest. 1999;104(11):1567–1573. doi: 10.1172/JCI8154. PubMed DOI PMC

Piazza GA, et al. Lysophosphatidic acid induction of transforming growth factors α and β: modulation of proliferation and differentiation in cultured human keratinocytes and mouse skin. Exp Cell Res. 1995;216(1):51–64. doi: 10.1006/excr.1995.1007. PubMed DOI

Xu J, et al. TGF-β-induced epithelial to mesenchymal transition. Cell Res. 2009;19(2):156–172. doi: 10.1038/cr.2009.5. PubMed DOI PMC

Gise A von, Pu WT. Endocardial and epicardial epithelial to mesenchymal transitions in heart development and disease. Circ Res. 2012;110(12):1628. doi: 10.1161/CIRCRESAHA.111.259960. PubMed DOI PMC

Schönberger T, et al. Pivotal role of phospholipase D1 in tumor necrosis factor-α-mediated inflammation and scar formation after myocardial ischemia and reperfusion in mice. Am J Pathol. 2014;184(9):2450–2464. doi: 10.1016/j.ajpath.2014.06.005. PubMed DOI

Sakurai H, et al. Functional interactions of transforming growth factor β-activated kinase 1 with IκB kinases to stimulate NF-κB activation. J Biol Chem. 1999;274(15):10641–10648. doi: 10.1074/jbc.274.15.10641. PubMed DOI

DeLaughter DM, et al. Spatial transcriptional profile of the chick and mouse endocardial cushions identify novel regulators of endocardial EMT in vitro. J Mol Cell Cardiol. 2013;59:196–204. doi: 10.1016/j.yjmcc.2013.03.016. PubMed DOI PMC

Kang DW, et al. Autoregulation of phospholipase D activity is coupled to selective induction of phospholipase D1 expression to promote invasion of breast cancer cells. Int J Cancer. 2011;128(4):805–816. doi: 10.1002/ijc.25402. PubMed DOI

Javelaud D, et al. TGF-β/SMAD/GLI2 signaling axis in cancer progression and metastasis. Cancer Res. 2011;71(17):5606–5610. doi: 10.1158/0008-5472.CAN-11-1194. PubMed DOI PMC

Dennler S, et al. Induction of sonic hedgehog mediators by transforming growth factor-β: Smad3-dependent activation of Gli2 and Gli1 expression in vitro and in vivo. Cancer Res. 2007;67(14):6981–6986. doi: 10.1158/0008-5472.CAN-07-0491. PubMed DOI

Dyer LA, Kirby ML. Sonic hedgehog maintains proliferation in secondary heart field progenitors and is required for normal arterial pole formation. Dev Biol. 2009;330(2):305–317. doi: 10.1016/j.ydbio.2009.03.028. PubMed DOI PMC

Elvers M, et al. Impaired α(IIb)β(3) integrin activation and shear-dependent thrombus formation in mice lacking phospholipase D1. Sci Signal. 2010;3(103):ra1. PubMed PMC

El-Brolosy MA, et al. Genetic compensation triggered by mutant mRNA degradation. Nature. 2019;568(7751):193–197. doi: 10.1038/s41586-019-1064-z. PubMed DOI PMC

Ma Z, et al. PTC-bearing mRNA elicits a genetic compensation response via Upf3a and COMPASS components. Nature. 2019;568(7751):259–263. doi: 10.1038/s41586-019-1057-y. PubMed DOI

Morris AJ, et al. Measurement of phospholipase D activity. Anal Biochem. 1997;252(1):1–9. doi: 10.1006/abio.1997.2299. PubMed DOI

Leiros I, et al. The first crystal structure of a phospholipase D. Structure. 2000;8(6):655–667. doi: 10.1016/S0969-2126(00)00150-7. PubMed DOI

Dixon JE, Stuckey JA. Crystal structure of a phospholipase D family member. Nat Struct Biol. 1999;6(3):278–284. doi: 10.1038/6716. PubMed DOI

Townsend TA, et al. Endocardial cell epithelial-mesenchymal transformation requires Type III TGFβ receptor interaction with GIPC. Cell Signal. 2012;24(1):247–256. doi: 10.1016/j.cellsig.2011.09.006. PubMed DOI PMC

Townsend TA, et al. Transforming growth factor-beta-stimulated endocardial cell transformation is dependent on Par6c regulation of RhoA. J Biol Chem. 2008;283(20):13834–13841. doi: 10.1074/jbc.M710607200. PubMed DOI PMC

Townsend TA, et al. BMP-2 and TGFβ2 shared pathways regulate endocardial cell transformation. Cells Tissues Organs. 2011;194(1):1–12. doi: 10.1159/000322035. PubMed DOI PMC

Chang CC, et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4(1):7. doi: 10.1186/s13742-015-0047-8. PubMed DOI PMC

Belkadi A, et al. Whole-exome sequencing to analyze population structure, parental inbreeding, and familial linkage. Proc Natl Acad Sci U S A. 2016;113(24):6713–6718. doi: 10.1073/pnas.1606460113. PubMed DOI PMC

See more in PubMed

ClinicalTrials.gov
NCT01196182

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...