Biallelic loss-of-function variants in PLD1 cause congenital right-sided cardiac valve defects and neonatal cardiomyopathy
Language English Country United States Media print
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.
Grant support
UM1 HL098162
NHLBI NIH HHS - United States
T32 GM092714
NIGMS NIH HHS - United States
UM1 HL098123
NHLBI NIH HHS - United States
U01 HL131003
NHLBI NIH HHS - United States
R35 GM128666
NIGMS NIH HHS - United States
UM1 HL128761
NHLBI NIH HHS - United States
UM1 HL128711
NHLBI NIH HHS - United States
UM1 HL172717
NHLBI NIH HHS - United States
UM1 HL098147
NHLBI NIH HHS - United States
R01 GM084251
NIGMS NIH HHS - United States
PubMed
33645542
PubMed Central
PMC7919725
DOI
10.1172/jci142148
PII: 142148
Knihovny.cz E-resources
- Keywords
- Cardiology, Cardiovascular disease, Genetic diseases, Genetics, Heart failure,
- MeSH
- Alleles * MeSH
- Phospholipase D * genetics metabolism MeSH
- Humans MeSH
- Loss of Function Mutation * MeSH
- Heart Valve Diseases * enzymology genetics MeSH
- Heart Defects, Congenital * enzymology genetics MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Names of Substances
- Phospholipase D * MeSH
- phospholipase D1 MeSH Browser
Congenital heart disease is the most common type of birth defect, accounting for one-third of all congenital anomalies. Using whole-exome sequencing of 2718 patients with congenital heart disease and a search in GeneMatcher, we identified 30 patients from 21 unrelated families of different ancestries with biallelic phospholipase D1 (PLD1) variants who presented predominantly with congenital cardiac valve defects. We also associated recessive PLD1 variants with isolated neonatal cardiomyopathy. Furthermore, we established that p.I668F is a founder variant among Ashkenazi Jews (allele frequency of ~2%) and describe the phenotypic spectrum of PLD1-associated congenital heart defects. PLD1 missense variants were overrepresented in regions of the protein critical for catalytic activity, and, correspondingly, we observed a strong reduction in enzymatic activity for most of the mutant proteins in an enzymatic assay. Finally, we demonstrate that PLD1 inhibition decreased endothelial-mesenchymal transition, an established pivotal early step in valvulogenesis. In conclusion, our study provides a more detailed understanding of disease mechanisms and phenotypic expression associated with PLD1 loss of function.
Cyprus School of Molecular Medicine Nicosia Cyprus
Department of Biochemistry and Cell Biology Stony Brook University Stony Brook New York USA
Department of Clinical Genetics and
Department of Clinical Genetics The Cyprus Institute of Neurology and Genetics Nicosia Cyprus
Department of Genetics Hadassah Hebrew University Medical Center Jerusalem Israel
Department of Human Genetics Leiden University Medical Center Leiden Netherlands
Department of Human Genetics Leiden University Medical Centre Leiden Netherlands
Department of Medical Biology Amsterdam UMC Amsterdam Netherlands
Department of Obstetrics Gynecology and Women's Health
Department of Pathology Isala Women and Children's Hospital Zwolle Netherlands
Department of Pediatric Cardiology Hadassah Hebrew University Medical Center Jerusalem Israel
Department of Pediatric Cardiology Leiden University Medical Centre Leiden Netherlands
Department of Pediatrics Division of Pediatric Cardiology and
Department of Pediatrics University of Minnesota Minneapolis Minnesota USA
Department of Pharmacology Vanderbilt University School of Medicine Nashville Tennessee USA
Division of Cardiology Ann and Robert H Lurie Children's Hospital of Chicago Chicago Illinois USA
Feinberg School of Medicine Northwestern University Chicago Illinois USA
Genetic and Rare Disease Research Division Bambino Gesù Children's Hospital IRCCS Rome Italy
Makarios Medical Centre Nicosia Cyprus
Medical Genetics Department UPMC Children's Hospital of Pittsburgh Pittsburgh Pennsylvania USA
Service de Génétique Médicale CHU Estaing Clermont Ferrand France
Ultrasound and Fetal Medicine Diagnostic Centre Nicosia Cyprus
UMR 1231 INSERM GAD Université Bourgogne Franche Comté Dijon France
See more in PubMed
Dolk H, et al. Congenital heart defects in Europe: prevalence and perinatal mortality, 2000 to 2005. Circulation. 2011;123(8):841–849. doi: 10.1161/CIRCULATIONAHA.110.958405. PubMed DOI
Nelson RK, Frohman MA. Physiological and pathophysiological roles for phospholipase D. J Lipid Res. 2015;56(12):2229–2237. doi: 10.1194/jlr.R059220. PubMed DOI PMC
Ta-Shma A, et al. Congenital valvular defects associated with deleterious mutations in the PLD1 gene. J Med Genet. 2017;54(4):278–286. doi: 10.1136/jmedgenet-2016-104259. PubMed DOI
Sobreira N, et al. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum Mutat. 2015;36(10):928–930. doi: 10.1002/humu.22844. PubMed DOI PMC
Bowling FZ, et al. Crystal structure of human PLD1 provides insight into activation by PI(4,5)P2 and RhoA. Nat Chem Biol. 2020;16(4):400–407. doi: 10.1038/s41589-020-0499-8. PubMed DOI PMC
Barnett JV, Desgrosellier JS. Early events in valvulogenesis: a signaling perspective. Birth Defects Res Part C Embryo Today Rev. 2003;69(1):58–72. doi: 10.1002/bdrc.10006. PubMed DOI
Vander Velde ET, et al. CONCOR, an initiative towards a national registry and DNA-bank of patients with congenital heart disease in the Netherlands: rationale, design, and first results. Eur J Epidemiol. 2005;20(6):549–557. doi: 10.1007/s10654-005-4264-9. PubMed DOI
Gelb B, et al. The Congenital Heart Disease Genetic Network Study: rationale, design, and early results. Circ Res. 2013;112(4):698–706. doi: 10.1161/CIRCRESAHA.111.300297. PubMed DOI PMC
Jin SC, et al. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat Genet. 2017;49(11):1593–1601. doi: 10.1038/ng.3970. PubMed DOI PMC
van der Palen RLF, et al. Uhl’s anomaly: clinical spectrum and pathophysiology. Int J Cardiol. 2016;209:118–121. doi: 10.1016/j.ijcard.2016.02.048. PubMed DOI
Karczewski KJ, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434–443. doi: 10.1038/s41586-020-2308-7. PubMed DOI PMC
Bray SM, et al. Signatures of founder effects, admixture, and selection in the Ashkenazi Jewish population. Proc Natl Acad Sci U S A. 2010;107(37):16222–16227. doi: 10.1073/pnas.1004381107. PubMed DOI PMC
Gandolfo LC, et al. Dating rare mutations from small samples with dense marker data. Genetics. 2014;197(4):1315–1327. doi: 10.1534/genetics.114.164616. PubMed DOI PMC
Sung TC, et al. Structural analysis of human phospholipase D1. J Biol Chem. 1999;274(6):3659–3666. doi: 10.1074/jbc.274.6.3659. PubMed DOI
Hammond SM, et al. Human ADP-ribosylation factor-activated phosphatidylcholine-specific phospholipase D defines a new and highly conserved gene family. J Biol Chem. 1995;270(50):29640–29643. doi: 10.1074/jbc.270.50.29640. PubMed DOI
Sung TC. Mutagenesis of phospholipase D defines a superfamily including a trans-Golgi viral protein required for poxvirus pathogenicity. EMBO J. 1997;16(15):4519–4530. doi: 10.1093/emboj/16.15.4519. PubMed DOI PMC
Sung TC, et al. Structural analysis of human phospholipase D1. J Biol Chem. 1999;274(6):3659–3666. doi: 10.1074/jbc.274.6.3659. PubMed DOI
Du G, et al. Regulation of phospholipase D1 subcellular cycling through coordination of multiple membrane association motifs. J Cell Biol. 2003;162(2):305–315. doi: 10.1083/jcb.200302033. PubMed DOI PMC
Vitale N, et al. Phospholipase D1: a key factor for the exocytotic machinery in neuroendocrine cells. EMBO J. 2001;20(10):2424–2434. doi: 10.1093/emboj/20.10.2424. PubMed DOI PMC
Sugars JM, et al. Fatty acylation of phospholipase D1 on cysteine residues 240 and 241 determines localization on intracellular membranes. J Biol Chem. 1999;274(42):30023–30027. doi: 10.1074/jbc.274.42.30023. PubMed DOI
DeLaughter DM, et al. What chick and mouse models have taught us about the role of the endocardium in congenital heart disease. Birth Defects Res A Clin Mol Teratol. 2011;91(6):511–525. doi: 10.1002/bdra.20809. PubMed DOI PMC
Lavieri RR, et al. Design, synthesis, and biological evaluation of halogenated N-(2-(4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]decan-8-yl)ethyl)benzamides: discovery of an isoform-selective small molecule phospholipase D2 inhibitor. J Med Chem. 2010;53(18):6706–6719. doi: 10.1021/jm100814g. PubMed DOI PMC
Bassing CH, et al. A transforming growth factor beta type I receptor that signals to activate gene expression. Science. 1994;263(5143):87–89. doi: 10.1126/science.8272871. PubMed DOI
Postma AV, et al. Mutations in the sarcomere gene MYH7 in Ebstein anomaly. Circ Cardiovasc Genet. 2011;4(1):43–50. doi: 10.1161/CIRCGENETICS.110.957985. PubMed DOI
Benson DW, et al. Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J Clin Invest. 1999;104(11):1567–1573. doi: 10.1172/JCI8154. PubMed DOI PMC
Piazza GA, et al. Lysophosphatidic acid induction of transforming growth factors α and β: modulation of proliferation and differentiation in cultured human keratinocytes and mouse skin. Exp Cell Res. 1995;216(1):51–64. doi: 10.1006/excr.1995.1007. PubMed DOI
Xu J, et al. TGF-β-induced epithelial to mesenchymal transition. Cell Res. 2009;19(2):156–172. doi: 10.1038/cr.2009.5. PubMed DOI PMC
Gise A von, Pu WT. Endocardial and epicardial epithelial to mesenchymal transitions in heart development and disease. Circ Res. 2012;110(12):1628. doi: 10.1161/CIRCRESAHA.111.259960. PubMed DOI PMC
Schönberger T, et al. Pivotal role of phospholipase D1 in tumor necrosis factor-α-mediated inflammation and scar formation after myocardial ischemia and reperfusion in mice. Am J Pathol. 2014;184(9):2450–2464. doi: 10.1016/j.ajpath.2014.06.005. PubMed DOI
Sakurai H, et al. Functional interactions of transforming growth factor β-activated kinase 1 with IκB kinases to stimulate NF-κB activation. J Biol Chem. 1999;274(15):10641–10648. doi: 10.1074/jbc.274.15.10641. PubMed DOI
DeLaughter DM, et al. Spatial transcriptional profile of the chick and mouse endocardial cushions identify novel regulators of endocardial EMT in vitro. J Mol Cell Cardiol. 2013;59:196–204. doi: 10.1016/j.yjmcc.2013.03.016. PubMed DOI PMC
Kang DW, et al. Autoregulation of phospholipase D activity is coupled to selective induction of phospholipase D1 expression to promote invasion of breast cancer cells. Int J Cancer. 2011;128(4):805–816. doi: 10.1002/ijc.25402. PubMed DOI
Javelaud D, et al. TGF-β/SMAD/GLI2 signaling axis in cancer progression and metastasis. Cancer Res. 2011;71(17):5606–5610. doi: 10.1158/0008-5472.CAN-11-1194. PubMed DOI PMC
Dennler S, et al. Induction of sonic hedgehog mediators by transforming growth factor-β: Smad3-dependent activation of Gli2 and Gli1 expression in vitro and in vivo. Cancer Res. 2007;67(14):6981–6986. doi: 10.1158/0008-5472.CAN-07-0491. PubMed DOI
Dyer LA, Kirby ML. Sonic hedgehog maintains proliferation in secondary heart field progenitors and is required for normal arterial pole formation. Dev Biol. 2009;330(2):305–317. doi: 10.1016/j.ydbio.2009.03.028. PubMed DOI PMC
Elvers M, et al. Impaired α(IIb)β(3) integrin activation and shear-dependent thrombus formation in mice lacking phospholipase D1. Sci Signal. 2010;3(103):ra1. PubMed PMC
El-Brolosy MA, et al. Genetic compensation triggered by mutant mRNA degradation. Nature. 2019;568(7751):193–197. doi: 10.1038/s41586-019-1064-z. PubMed DOI PMC
Ma Z, et al. PTC-bearing mRNA elicits a genetic compensation response via Upf3a and COMPASS components. Nature. 2019;568(7751):259–263. doi: 10.1038/s41586-019-1057-y. PubMed DOI
Morris AJ, et al. Measurement of phospholipase D activity. Anal Biochem. 1997;252(1):1–9. doi: 10.1006/abio.1997.2299. PubMed DOI
Leiros I, et al. The first crystal structure of a phospholipase D. Structure. 2000;8(6):655–667. doi: 10.1016/S0969-2126(00)00150-7. PubMed DOI
Dixon JE, Stuckey JA. Crystal structure of a phospholipase D family member. Nat Struct Biol. 1999;6(3):278–284. doi: 10.1038/6716. PubMed DOI
Townsend TA, et al. Endocardial cell epithelial-mesenchymal transformation requires Type III TGFβ receptor interaction with GIPC. Cell Signal. 2012;24(1):247–256. doi: 10.1016/j.cellsig.2011.09.006. PubMed DOI PMC
Townsend TA, et al. Transforming growth factor-beta-stimulated endocardial cell transformation is dependent on Par6c regulation of RhoA. J Biol Chem. 2008;283(20):13834–13841. doi: 10.1074/jbc.M710607200. PubMed DOI PMC
Townsend TA, et al. BMP-2 and TGFβ2 shared pathways regulate endocardial cell transformation. Cells Tissues Organs. 2011;194(1):1–12. doi: 10.1159/000322035. PubMed DOI PMC
Chang CC, et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4(1):7. doi: 10.1186/s13742-015-0047-8. PubMed DOI PMC
Belkadi A, et al. Whole-exome sequencing to analyze population structure, parental inbreeding, and familial linkage. Proc Natl Acad Sci U S A. 2016;113(24):6713–6718. doi: 10.1073/pnas.1606460113. PubMed DOI PMC
ClinicalTrials.gov
NCT01196182