A SNaPshot Assay for Determination of the Mannose-Binding Lectin Gene Variants and an Algorithm for Calculation of Haplogenotype Combinations
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NU-20-08-00205
Ministerstvo Zdravotnictví Ceské Republiky
NU20-03-00126
Ministerstvo Zdravotnictví Ceské Republiky
NV17-30439A
Ministerstvo Zdravotnictví Ceské Republiky
MUNI/A/1428/2019
Lékařská fakulta, Masarykova univerzita
ROZV/28/LF4/20
Lékařská fakulta, Masarykova univerzita
PubMed
33668563
PubMed Central
PMC7918147
DOI
10.3390/diagnostics11020301
PII: diagnostics11020301
Knihovny.cz E-zdroje
- Klíčová slova
- Haplogenotype Calculator, SNaPshot assay, genotyping, haplogenotypes, mannose-binding lectin, mannose-binding lectin gene (MBL2), single nucleotide polymorphism,
- Publikační typ
- časopisecké články MeSH
Mannose-binding lectin (MBL) deficiency caused by the variability in the MBL2 gene is responsible for the susceptibility to and severity of various infectious and autoimmune diseases. A combination of six single nucleotide polymorphisms (SNPs) has a major impact on MBL levels in circulation. The aim of this study is to design and validate a sensitive and economical method for determining MBL2 haplogenotypes. The SNaPshot assay is designed and optimized to genotype six SNPs (rs1800451, rs1800450, rs5030737, rs7095891, rs7096206, rs11003125) and is validated by comparing results with Sanger sequencing. Additionally, an algorithm for online calculation of haplogenotype combinations from the determined genotypes is developed. Three hundred and twenty-eight DNA samples from healthy individuals from the Czech population are genotyped. Minor allele frequencies (MAFs) in the Czech population are in accordance with those present in the European population. The SNaPshot assay for MBL2 genotyping is a high-throughput, cost-effective technique that can be used in further genetic-association studies or in clinical practice. Moreover, a freely available online application for the calculation of haplogenotypes from SNPs is developed within the scope of this project.
Zobrazit více v PubMed
Dommett R.M., Klein N., Turner M.W. Mannose-Binding Lectin in Innate Immunity: Past, Present and Future. Tissue Antigens. 2006;68:193–209. doi: 10.1111/j.1399-0039.2006.00649.x. PubMed DOI PMC
Takahashi K., Ip W.E., Michelow I.C., Ezekowitz R.A.B. The Mannose-Binding Lectin: A Prototypic Pattern Recognition Molecule. Curr. Opin. Immunol. 2006;18:16–23. doi: 10.1016/j.coi.2005.11.014. PubMed DOI PMC
Ip E.W.K., Takahashi K., Ezekowitz A.R.B., Stuart L.M. Mannose-Binding Lectin and Innate Immunity. Immunol. Rev. 2009;230:9–21. doi: 10.1111/j.1600-065X.2009.00789.x. PubMed DOI
Cedzyński M., Kilpatrick D.C., Świerzko A.S. The Complement FactsBook. Elsevier; Amsterdam, The Netherlands: 2018. Mannose-Binding Lectin; pp. 33–43.
dos Santos Silva P.M., de Oliveira W.F., Albuquerque P.B.S., dos Santos Correia M.T., Coelho L.C.B.B. Insights into Anti-Pathogenic Activities of Mannose Lectins. Int. J. Biol. Macromol. 2019;140:234–244. doi: 10.1016/j.ijbiomac.2019.08.059. PubMed DOI
Kjaer T.R., Thiel S., Andersen G.R. Toward a Structure-Based Comprehension of the Lectin Pathway of Complement. Mol. Immunol. 2013;56:222–231. doi: 10.1016/j.molimm.2013.05.220. PubMed DOI
Kjaer T.R., Jensen L., Hansen A., Dani R., Jensenius J.C., Dobó J., Gál P., Thiel S. Oligomerization of Mannan-Binding Lectin Dictates Binding Properties and Complement Activation. Scand. J. Immunol. 2016;84:12–19. doi: 10.1111/sji.12441. PubMed DOI
Garred P., Genster N., Pilely K., Bayarri-Olmos R., Rosbjerg A., Ma Y.J., Skjoedt M.-O. A Journey through the Lectin Pathway of Complement-MBL and Beyond. Immunol. Rev. 2016;274:74–97. doi: 10.1111/imr.12468. PubMed DOI
Dobó J., Kocsis A., Gál P. Be on Target: Strategies of Targeting Alternative and Lectin Pathway Components in Complement-Mediated Diseases. Front. Immunol. 2018;9:1851. doi: 10.3389/fimmu.2018.01851. PubMed DOI PMC
Heitzeneder S., Seidel M., Förster-Waldl E., Heitger A. Mannan-Binding Lectin Deficiency—Good News, Bad News, Doesn’t Matter? Clin. Immunol. 2012;143:22–38. doi: 10.1016/j.clim.2011.11.002. PubMed DOI
Verdu P., Barreiro L.B., Patin E., Gessain A., Cassar O., Kidd J.R., Kidd K.K., Behar D.M., Froment A., Heyer E., et al. Evolutionary Insights into the High Worldwide Prevalence of MBL2 Deficiency Alleles. Hum. Mol. Genet. 2006;15:2650–2658. doi: 10.1093/hmg/ddl193. PubMed DOI
Seyfarth J., Garred P., Madsen H.O. The ‘Involution’ of Mannose-Binding Lectin. Hum. Mol. Genet. 2005;14:2859–2869. doi: 10.1093/hmg/ddi318. PubMed DOI
Bouwman L.H., Roep B.O., Roos A. Mannose-Binding Lectin: Clinical Implications for Infection, Transplantation, and Autoimmunity. Hum. Immunol. 2006;67:247–256. doi: 10.1016/j.humimm.2006.02.030. PubMed DOI
Hou J., Ding J., Li L., Peng Y., Gao X., Guo Z. Association of Sirtuin 1 Gene Polymorphisms with Nephrolithiasis in Eastern Chinese Population. Ren. Fail. 2019;41:34–41. doi: 10.1080/0886022X.2019.1568258. PubMed DOI PMC
Geng Y., Li L., Wang X., He F., Zhou Y., Yang M., Xu Y. Interleukin-10 Polymorphisms Affect the Key Periodontal Pathogens in Chinese Periodontitis Patients. Sci. Rep. 2018;8:9068. doi: 10.1038/s41598-018-26236-4. PubMed DOI PMC
Zhao M., Zhang Y., Liu Y., Sun G., Tian H., Hong L. Polymorphisms in MAPK9 (Rs4147385) and CSF1R (Rs17725712) Are Associated with the Development of Inhibitors in Patients with Haemophilia A in North China. Int. J. Lab. Hematol. 2019;41:572–577. doi: 10.1111/ijlh.13055. PubMed DOI
Sambrook J., Fritsch E., Maniatis T. Molecular Cloning: A Laboratory Manual: Volume 2. 2nd ed. Cold Spring Harbor; New York, NY, USA: 1989.
Świerzko A.S., Cedzyński M. The Influence of the Lectin Pathway of Complement Activation on Infections of the Respiratory System. Front. Immunol. 2020;11:585243. doi: 10.3389/fimmu.2020.585243. PubMed DOI PMC
Barrett J.C., Fry B., Maller J., Daly M.J. Haploview: Analysis and Visualization of LD and Haplotype Maps. Bioinformatics. 2005;21:263–265. doi: 10.1093/bioinformatics/bth457. PubMed DOI
Steffensen R., Thiel S., Varming K., Jersild C., Jensenius J.C. Detection of Structural Gene Mutations and Promoter Polymorphisms in the Mannan-Binding Lectin (MBL) Gene by Polymerase Chain Reaction with Sequence-Specific Primers. J. Immunol. Methods. 2000;241:33–42. doi: 10.1016/S0022-1759(00)00198-8. PubMed DOI
Zhang N., Zhuang M., Ma A., Wang G., Cheng P., Yang Y., Wang X., Zhang J., Chen X., Lu M. Association of Levels of Mannose-Binding Lectin and the MBL2 Gene with Type 2 Diabetes and Diabetic Nephropathy. PLoS ONE. 2013;8:e83059. doi: 10.1371/journal.pone.0083059. PubMed DOI PMC
Yarden J., Radojkovic D., De Boeck K., Macek M., Jr., Zemkova D., Vavrova V., Vlietinck R., Cassiman J.-J., Cuppens H. Polymorphisms in the Mannose Binding Lectin Gene Affect the Cystic Fibrosis Pulmonary Phenotype. J. Med. Genet. 2004;41:629–633. doi: 10.1136/jmg.2003.017947. PubMed DOI PMC
Laisk T., Peters M., Saare M., Haller-Kikkatalo K., Karro H., Salumets A. Association of CCR5, TLR2, TLR4 and MBL Genetic Variations with Genital Tract Infections and Tubal Factor Infertility. J. Reprod. Immunol. 2010;87:74–81. doi: 10.1016/j.jri.2010.06.001. PubMed DOI
Tarova E.T., Polakova H., Kayserova H., Celec P., Zuzulova M., Kadasi L. Study of the Effect of DNA Polymorphisms in the Mannose-Binding Lectin Gene (MBL2) on Disease Severity in Slovak Cystic Fibrosis Patients. Gen. Physiol. Biophys. 2012;30:373–378. doi: 10.4149/gpb_2011_04_373. PubMed DOI
Sokołowska A., Świerzko A.S., Gajek G., Gołos A., Michalski M., Nowicki M., Szala-Poździej A., Wolska-Washer A., Brzezińska O., Wierzbowska A., et al. Associations of Ficolins and Mannose-Binding Lectin with Acute Myeloid Leukaemia in Adults. Sci. Rep. 2020;10:10561. doi: 10.1038/s41598-020-67516-2. PubMed DOI PMC
Swale A., Miyajima F., Kolamunnage-Dona R., Roberts P., Little M., Beeching N.J., Beadsworth M.B.J., Liloglou T., Pirmohamed M. Serum Mannose-Binding Lectin Concentration, but Not Genotype, Is Associated With Clostridium Difficile Infection Recurrence: A Prospective Cohort Study. Clin. Infect. Dis. 2014;59:1429–1436. doi: 10.1093/cid/ciu666. PubMed DOI PMC
Madsen E.C., Levy E.R., Madden K., Agan A.A., Sullivan R.M., Graham D.A., Randolph A.G. Mannose-Binding Lectin Levels in Critically Ill Children With Severe Infections. Pediatr. Crit. Care Med. 2017;18:103–111. doi: 10.1097/PCC.0000000000001000. PubMed DOI PMC
Su C., Lin Y., Cai L., Mao Q., Niu J. Association between Mannose-Binding Lectin Variants, Haplotypes and Risk of Hepatocellular Carcinoma: A Case-Control Study. Sci. Rep. 2016;6:32147. doi: 10.1038/srep32147. PubMed DOI PMC
Puente M., Fariñas-Alvarez C., Moreto A., Sánchez-Velasco P., Ocejo-Vinyals J.G., Fariñas M.C., on behalf of SCT Team Low Pre-Transplant Levels of Mannose-Binding Lectin Are Associated with Viral Infections and Mortality after Haematopoietic Allogeneic Stem Cell Transplantation. BMC Immunol. 2019;20:40. doi: 10.1186/s12865-019-0318-8. PubMed DOI PMC
Kalia N., Singh J., Sharma S., Arora H., Kaur M. Genetic and Phenotypic Screening of Mannose-Binding Lectin in Relation to Risk of Recurrent Vulvovaginal Infections in Women of North India: A Prospective Cohort Study. Front. Microbiol. 2017;8 doi: 10.3389/fmicb.2017.00075. PubMed DOI PMC
Losada López I., García Gasalla M., González Moreno J., Serrano A., Domínguez Valdés F.J., Milà J., Payeras A. Mannose Binding Lectin Polymorphisms in Systemic Lupus Erythematosus in Spain. Eur. J. Inflamm. 2016;14:78–85. doi: 10.1177/1721727X16646385. DOI
Pągowska-Klimek I., Świerzko A.S., Michalski M., Moll M., Szala-Poździej A., Sokołowska A., Krajewski W.R., Cedzyński M. Mannose-Binding Lectin (MBL) Insufficiency Protects against the Development of Systemic Inflammatory Response after Pediatric Cardiac Surgery. Immunobiology. 2016;221:175–181. doi: 10.1016/j.imbio.2015.09.010. PubMed DOI
Gu X., Ji Q., Wang H., Jiang M., Yang J., Fang M., Wang M., Gao C. Genetic Variants of Mannose-Binding Lectin 2 Gene Influence Progression and Prognosis of Patients with Hepatitis B Virus Infection in China. Clin. Res. Hepatol. Gastroenterol. 2016;40:614–621. doi: 10.1016/j.clinre.2015.12.015. PubMed DOI
Monsey L., Best L.G., Zhu J., DeCroo S., Anderson M.Z. The Association of Mannose Binding Lectin Genotype and Immune Response to Chlamydia Pneumoniae: The Strong Heart Study. PLoS ONE. 2019;14:e0210640. doi: 10.1371/journal.pone.0210640. PubMed DOI PMC
Amiri A., Sabooteh T., Shahsavar F., Anbari K., Pouremadi F. Mannose-Binding Lectin (MBL) Gene Polymorphisms in Susceptibility to Pulmonary Tuberculosis among the Lur Population of Lorestan Province of Iran. Genom. Data. 2017;12:146–150. doi: 10.1016/j.gdata.2017.05.005. PubMed DOI PMC
Ouyang Y., Zhu L., Shi M., Yu S., Jin Y., Wang Z., Ma J., Yang M., Zhang X., Pan X., et al. A Rare Genetic Defect of MBL2 Increased the Risk for Progression of IgA Nephropathy. Front. Immunol. 2019;10:537. doi: 10.3389/fimmu.2019.00537. PubMed DOI PMC
Giang N.T., van Tong H., Quyet D., Hoan N.X., Nghia T.H., Nam N.M., Hung H.V., Anh D.T., Van Mao C., Son H.A., et al. Complement Protein Levels and MBL2 Polymorphisms Are Associated with Dengue and Disease Severity. Sci. Rep. 2020;10:14923. doi: 10.1038/s41598-020-71947-2. PubMed DOI PMC
Toivonen L., Vuononvirta J., Mertsola J., Waris M., He Q., Peltola V. Polymorphisms of Mannose-Binding Lectin and Toll-like Receptors 2, 3, 4, 7 and 8 and the Risk of Respiratory Infections and Acute Otitis Media in Children. Pediatr. Infect. Dis. J. 2017;36:e114–e122. doi: 10.1097/INF.0000000000001479. PubMed DOI
Bujalkova M., Zavodna K., Krivulcik T., Ilencikova D., Wolf B., Kovac M., Karner-Hanusch J., Heinimann K., Marra G., Jiricny J., et al. Multiplex SNaPshot Genotyping for Detecting Loss of Heterozygosity in the Mismatch-Repair Genes MLH1 and MSH2 in Microsatellite-Unstable Tumors. Clin. Chem. 2008;54:1844–1854. doi: 10.1373/clinchem.2008.108902. PubMed DOI
Mehta B., Daniel R., Phillips C., McNevin D. Forensically Relevant SNaPshot® Assays for Human DNA SNP Analysis: A Review. Int. J. Leg. Med. 2017;131:21–37. doi: 10.1007/s00414-016-1490-5. PubMed DOI
Garred P., Strøm J.J., Quist L., Taaning E., Madsen H.O. Association of Mannose-Binding Lectin Polymorphisms with Sepsis and Fatal Outcome, in Patients with Systemic Inflammatory Response Syndrome. J. Infect. Dis. 2003;188:1394–1403. doi: 10.1086/379044. PubMed DOI
Skalníková H., Freiberger T., Chumchalová J., Grombiříková H., Šedivá A. Cost-Effective Genotyping of Human MBL2 Gene Mutations Using Multiplex PCR. J. Immunol. Methods. 2004;295:139–147. doi: 10.1016/j.jim.2004.10.007. PubMed DOI
de Araujo F.J., Mesquita T.G., da Silva L.D.O., de Almeida S.A., de S Vital W., Chrusciak-Talhari A., de O Guerra J.A., Talhari S., Ramasawmy R. Functional Variations in MBL2 Gene Are Associated with Cutaneous Leishmaniasis in the Amazonas State of Brazil. Genes Immun. 2015;16:284–288. doi: 10.1038/gene.2015.6. PubMed DOI
Speletas M., Gounaris A., Sevdali E., Kompoti M., Konstantinidi K., Sokou R., Tsitsami E., Germenis A.E. MBL2 Genotypes and Their Associations with MBL Levels and NICU Morbidity in a Cohort of Greek Neonates. J. Immunol. Res. 2015;2015:1–10. doi: 10.1155/2015/478412. PubMed DOI PMC
Munthe-Fog L., Madsen H.O., Garred P. Genotyping of FCN and MBL2 Polymorphisms Using Pyrosequencing. In: Gadjeva M., editor. The Complement System. Volume 1100. Humana Press; Totowa, NJ, USA: 2014. pp. 123–130. Methods in Molecular Biology. PubMed
Konopac M., Dusatkova P., Cinek O. SNPman: A Program for Genotype Calling Using Run Data from TaqMan Allelic Discrimination. Bioinformatics. 2011;27:2306–2308. doi: 10.1093/bioinformatics/btr383. PubMed DOI
Ito T., Inoue E., Kamatani N. Association Test Algorithm Between a Qualitative Phenotype and a Haplotype or Haplotype Set Using Simultaneous Estimation of Haplotype Frequencies, Diplotype Configurations and Diplotype-Based Penetrances. Genetics. 2004;168:2339–2348. doi: 10.1534/genetics.103.024653. PubMed DOI PMC
Zuo L., Wang K., Luo X. Use of Diplotypes—Matched Haplotype Pairs from Homologous Chromosomes—in Gene-Disease Association Studies. Shanghai Arch. Psychiatry. 2014;26:165–170. doi: 10.3969/j.issn.1002-0829.2014.03.009. PubMed DOI PMC
Tsujimoto S., Osumi T., Uchiyama M., Shirai R., Moriyama T., Nishii R., Yamada Y., Kudo K., Sekiguchi M., Arakawa Y., et al. Diplotype Analysis of NUDT15 Variants and 6-Mercaptopurine Sensitivity in Pediatric Lymphoid Neoplasms. Leukemia. 2018;32:2710–2714. doi: 10.1038/s41375-018-0190-1. PubMed DOI PMC
Al Bkhetan Z., Zobel J., Kowalczyk A., Verspoor K., Goudey B. Exploring Effective Approaches for Haplotype Block Phasing. BMC Bioinform. 2019;20:540. doi: 10.1186/s12859-019-3095-8. PubMed DOI PMC
Browning S.R., Browning B.L. Haplotype Phasing: Existing Methods and New Developments. Nat. Rev. Genet. 2011;12:703–714. doi: 10.1038/nrg3054. PubMed DOI PMC
Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M.A.R., Bender D., Maller J., Sklar P., de Bakker P.I.W., Daly M.J., et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007;81:559–575. doi: 10.1086/519795. PubMed DOI PMC
Excoffier L., Lischer H.E.L. Arlequin Suite Ver 3.5: A New Series of Programs to Perform Population Genetics Analyses under Linux and Windows. Mol. Ecol. Resour. 2010;10:564–567. doi: 10.1111/j.1755-0998.2010.02847.x. PubMed DOI
Kim S., Park K., Shin C., Cho N.H., Ko J.-J., Koh I., Kwack K. Diplotyper: Diplotype-Based Association Analysis. BMC Med. Genom. 2013;6:S5. doi: 10.1186/1755-8794-6-S2-S5. PubMed DOI PMC
Kavrikova D., Borilova Linhartova P., Lucanova S., Poskerova H., Fassmann A., Izakovicova Holla L. Chemokine Receptor 2 (CXCR2) Gene Variants and Their Association with Periodontal Bacteria in Patients with Chronic Periodontitis. Mediat. Inflamm. 2019;2019:1–8. doi: 10.1155/2019/2061868. PubMed DOI PMC