Genetic Diversity in Candidate Single-Nucleotide Polymorphisms Associated with Resistance in Honeybees in the Czech Republic Using the Novel SNaPshot Genotyping Panel
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
QK22020324
Ministry of Agriculture of the Czech Republic
PubMed
40149452
PubMed Central
PMC11942514
DOI
10.3390/genes16030301
PII: genes16030301
Knihovny.cz E-zdroje
- Klíčová slova
- Apis mellifera, SMR, SNP, VSH, Varroa resistance, genetic diversity, hygienic behavior, immune response,
- MeSH
- frekvence genu MeSH
- genetická variace MeSH
- genotyp MeSH
- genotypizační techniky metody MeSH
- jednonukleotidový polymorfismus * MeSH
- odolnost vůči nemocem * genetika MeSH
- včely genetika imunologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
Background/Objectives: The increasing pressure from pathogens and parasites on Apis mellifera populations is resulting in significant colony losses. It is desirable to identify resistance-associated single-nucleotide polymorphisms (SNPs) and their variability for the purpose of breeding resilient honeybee lines. This study examined the genetic diversity of 13 SNPs previously studied for associations with various resistance-providing traits, including six linked to Varroa-specific hygiene, five linked to suppressed mite reproduction, one linked to immune response, and one linked to chalkbrood resistance. Methods: Genotyping was performed using a novel SNaPshot genotyping panel designed for this study. The sample pool consisted of 308 honeybee samples in total, covering all 77 administrative districts of the Czech Republic. Results: All examined loci were polymorphic. The frequency of positive alleles in our population is medium to low, depending on the specific SNP. An analysis of genotype frequencies revealed that most loci exhibited the Hardy-Weinberg equilibrium. A comparison of the allele and genotype frequencies of the same locus between samples from hives and samples from flowers revealed no significant differences. The genetic diversity, as indicated by the heterozygosity values, ranged from 0.05 to 0.50. The fixation index (F) was, on average, close to zero, indicating minimal influence of inbreeding or non-random mating on the genetic structure of the analyzed samples. Conclusions: The obtained results provide further insights into the genetic variation of SNPs associated with the immune response and resistance to pathogens in honeybee populations in the Czech Republic. This research provides a valuable foundation for future studies of honeybee diversity and breeding.
Zobrazit více v PubMed
Potts S.G., Biesmeijer J.C., Kremen C., Neumann P., Schweiger O., Kunin W.E. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 2010;25:345–353. doi: 10.1016/j.tree.2010.01.007. PubMed DOI
Staveley J.P., Law S.A., Fairbrother A., Menzie C.A. A causal analysis of observed declines in managed honey bees (Apis mellifera) Hum. Ecol. Risk Assess. 2013;20:566–591. doi: 10.1080/10807039.2013.831263. PubMed DOI PMC
McMenamin A.J., Genersch E. Honey bee colony losses and associated viruses. Curr. Opin. Insect Sci. 2015;8:121–129. doi: 10.1016/j.cois.2015.01.015. PubMed DOI
Steinhauer N., Kulhanek K., Antúnez K., Human H., Chantawannakul P., Chauzat M.-P., vanEngelsdorp D. Drivers of colony losses. Curr. Opin. Insect Sci. 2018;26:142–148. doi: 10.1016/j.cois.2018.02.004. PubMed DOI
Gallai N., Salles J.-M., Settele J., Vaissière B.E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 2009;68:810–821. doi: 10.1016/j.ecolecon.2008.06.014. DOI
vanEngelsdorp D., Meixner M.D. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J. Invertebr. Pathol. 2010;103:S80–S95. doi: 10.1016/j.jip.2009.06.011. PubMed DOI
Kandel R., Kadariya I.P., Bohara K., Adhikari S. A Review on Molecular Breeding Techniques: Crucial Approach in Livestock Improvement. Arch. Agric. Environ. Sci. 2023;8:639–651. doi: 10.26832/24566632.2023.0804027. DOI
Bernstein R., Du M., Du Z.G., Strauss A.S., Hoppe A., Bienefeld K. First Large-Scale Genomic Prediction in the Honey Bee. Heredity. 2023;130:320–328. doi: 10.1038/s41437-023-00606-9. PubMed DOI PMC
Zakar E., Jávor A., Kusza S. Genetic bases of tolerance to Varroa destructor in honey bees (Apis mellifera L.) Insectes Sociaux. 2014;61:207–215. doi: 10.1007/s00040-014-0347-5. DOI
Kurze C., Routtu J., Moritz R.F.A. Parasite resistance and tolerance in honeybees at the individual and social level. Zoology. 2016;119:290–297. doi: 10.1016/j.zool.2016.03.007. PubMed DOI
Locke B., Thaduri S., Stephan J.G., Low M., Blacquière T., Dahle B., Le Conte Y., Neumann P., de Miranda J.R. Adapted tolerance to virus infections in four geographically distinct Varroa destructor-resistant honeybee populations. Sci. Rep. 2021;11:12359. doi: 10.1038/s41598-021-91686-2. PubMed DOI PMC
Morin M.-L., Giovenazzo P. Mite non-reproduction, recapping behavior, and hygienic behavior (freeze-kill method) linked to Varroa destructor infestation levels in selected Apis mellifera colonies. J. Vet. Diagn. Investig. 2023;35:655–663. doi: 10.1177/10406387231172141. PubMed DOI PMC
Kwok A.J., Mentzer A., Knight J.C. Host Genetics and Infectious Disease: New Tools, Insights and Translational Opportunities. Nat. Rev. Genet. 2021;22:137–153. doi: 10.1038/s41576-020-00297-6. PubMed DOI PMC
Evans J.D., Aronstein K., Chen Y.P., Hetru C., Imler J.-L., Jiang H., Kanost M., Thompson G.J., Zou Z., Hultmark D. Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol. Biol. 2006;15:645–656. doi: 10.1111/j.1365-2583.2006.00682.x. PubMed DOI PMC
Larsen A., Reynaldi F.J., Guzmán-Novoa E. Fundaments of the honey bee (Apis mellifera) immune system. Review. Rev. Mex. Cienc. Pecu. 2019;10:705–728. doi: 10.22319/rmcp.v10i3.4785. DOI
Barroso-Arévalo S., Vicente-Rubiano M., Puerta F., Molero F., Sánchez-Vizcaíno J.M. Immune related genes as markers for monitoring health status of honey bee colonies. BMC Vet. Res. 2019;15:72. doi: 10.1186/s12917-019-1823-y. PubMed DOI PMC
Gebremedhn H., Claeys Bouuaert D., Asperges M., Amssalu B., De Smet L., de Graaf D.C. Expression of Molecular Markers of Resilience against Varroa destructor and Bee Viruses in Ethiopian Honey Bees (Apis mellifera simensis) Focussing on Olfactory Sensing and the RNA Interference Machinery. Insects. 2023;14:436. doi: 10.3390/insects14050436. PubMed DOI PMC
Lu R.X., Bhatia S., Simone-Finstrom M., Rueppell O. Quantitative trait loci mapping for survival of virus infection and virus levels in honey bees. Infect. Genet. Evol. 2023;116:105534. doi: 10.1016/j.meegid.2023.105534. PubMed DOI
Henriques D., Lopes A.R., Chejanovsky N., Dalmon A., Higes M., Jabal-Uriel C., Le Conte Y., Reyes-Carreño M., Soroker V., Martín-Hernández R., et al. A SNP assay for assessing diversity in immune genes in the honey bee (Apis mellifera L. ). Sci. Rep. 2021;11:15317. doi: 10.1038/s41598-021-94833-x. PubMed DOI PMC
Martin S.J. The role of Varroa and viral pathogens in the collapse of honeybee colonies: A modelling approach. J. Appl. Ecol. 2001;38:1082–1093. doi: 10.1046/j.1365-2664.2001.00662.x. DOI
Traynor K.S., Mondet F., de Miranda J.R., Techer M., Kowallik V., Oddie M.A.Y., Chantawannakul P., McAfee A. Varroa destructor: A complex parasite, crippling honey bees worldwide. Trends Parasitol. 2020;36:592–606. doi: 10.1016/j.pt.2020.04.004. PubMed DOI
Ramsey S.D., Ochoa R., Bauchan G., Gulbronson C., Mowery J.D., Cohen A., Lim D., Joklik J., Cicero J.M., Ellis J.D., et al. Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proc. Natl. Acad. Sci. USA. 2019;116:1792–1801. doi: 10.1073/pnas.1818371116. PubMed DOI PMC
Martin S.J., Highfield A.C., Brettell L., Villalobos E.M., Budge G.E., Powell M., Nikaido S., Schroeder D.C. Global honey bee viral landscape altered by a parasitic mite. Science. 2012;336:1304–1306. doi: 10.1126/science.1220941. PubMed DOI
Mondet F., de Miranda J.R., Kretzschmar A., Le Conte Y., Mercer A.R., Schneider D.S. On the front line: Quantitative virus dynamics in honeybee (Apis mellifera L.) colonies along a new expansion front of the parasite Varroa destructor. PLoS Pathog. 2014;10:e1004323. doi: 10.1371/journal.ppat.1004323. PubMed DOI PMC
Di Prisco G., Annoscia D., Margiotta M., Ferrara R., Varricchio P., Zanni V., Caprioa E., Nazzib F., Pennacchio F. A mutualistic symbiosis between a parasitic mite and a pathogenic virus undermines honey bee immunity and health. Proc. Natl. Acad. Sci. USA. 2016;113:3203–3208. doi: 10.1073/pnas.1523515113. PubMed DOI PMC
O’Shea-Wheller T.A., Rinkevich F.D., Danka R.G., Simone-Finstrom M., Tokarz P.G., Healy K.B. A derived honey bee stock confers resistance to Varroa destructor and associated viral transmission. Sci. Rep. 2022;12:4852. doi: 10.1038/s41598-022-08643-w. PubMed DOI PMC
Mugabi F., Duffy K.J., van Langevelde F. Behaviours of honeybees can reduce the probability of deformed wing virus outbreaks in Varroa DESTRUCTOR-infested colonies. Model. Earth Syst. Environ. 2024;10:3745–3761. doi: 10.1007/s40808-024-01974-9. DOI
van Alphen J.J.M., Fernhout B.J. Natural selection, selective breeding, and the evolution of resistance of honeybees (Apis mellifera) against Varroa. Zool. Lett. 2020;6:6. doi: 10.1186/s40851-020-00158-4. PubMed DOI PMC
Pritchard D.J. Grooming by honey bees as a component of varroa resistant behavior. J. Apic. Res. 2016;55:38–48. doi: 10.1080/00218839.2016.1196016. DOI
Schöning C., Gisder S., Geiselhardt S., Kretschmann I., Bienefeld K., Hilker M., Genersch E. Evidence for damage-dependent hygienic behaviour towards Varroa destructor-parasitised brood in the western honey bee, Apis mellifera. J. Exp. Biol. 2012;215:264–271. doi: 10.1242/jeb.062562. PubMed DOI
Panziera D., van Langevelde F., Blacquière T. Varroa sensitive hygiene contributes to naturally selected varroa resistance in honey bees. J. Apic. Res. 2017;56:635–642. doi: 10.1080/00218839.2017.1351860. DOI
Wagoner K.M., Spivak M., Rueppell O. Brood Affects hygienic behavior in the honey bee (Hymenoptera: Apidae) J. Econ. Entomol. 2018;20:2520–2530. doi: 10.1093/jee/toy266. PubMed DOI
Wagoner K., Spivak M., Hefetz A., Reams T., Rueppell O. Stock-specific chemical brood signals are induced by Varroa and Deformed Wing Virus, and elicit hygienic response in the honey bee. Sci. Rep. 2019;9:8753. doi: 10.1038/s41598-019-45008-2. PubMed DOI PMC
Ivanova I., Bienefeld K. Apis mellifera worker bees selected for varroa-sensitive hygiene show higher specific sensitivity and perception speed towards low concentrations of chemical cues emitted by the brood. J. Insect Behav. 2023;36:96–112. doi: 10.1007/s10905-023-09824-9. DOI
Tsuruda J.M., Harris J.W., Bourgeois L., Danka R.G., Hunt G.J., Amdam G.V. High-resolution linkage analyses to identify genes that influence Varroa sensitive hygiene behavior in honey bees. PLoS ONE. 2012;7:e48276. doi: 10.1371/journal.pone.0048276. PubMed DOI PMC
Mondet F., Alaux C., Severac D., Rohmer M., Mercer A.R., Le Conte Y. Antennae hold a key to Varroa-sensitive hygiene behaviour in honey bees. Sci. Rep. 2015;5:10454. doi: 10.1038/srep10454. PubMed DOI PMC
Bilodeau L., Beaman L., Park Y. Differential expression of three dopamine receptors in varroa-resistant honey bees. J. Insect Sci. 2022;22:9. doi: 10.1093/jisesa/ieab109. PubMed DOI PMC
Behrens D., Huang Q., Geßner C., Rosenkranz P., Frey E., Locke B., Moritz R.F.A., Kraus F.B. Three QTL in the honey bee Apis mellifera L. suppress reproduction of the parasitic mite Varroa destructor. Ecol. Evol. 2011;1:451–458. doi: 10.1002/ece3.17. PubMed DOI PMC
Locke B., Conte Y.L., Crauser D., Fries I. Host adaptations reduce the reproductive success of Varroa destructor in two distinct European honey bee populations. Ecol. Evol. 2012;2:1144–1150. doi: 10.1002/ece3.248. PubMed DOI PMC
Frey E., Odemer R., Blum T., Rosenkranz P. Activation and interruption of the reproduction of Varroa destructor is triggered by host signals (Apis mellifera) J. Invertebr. Pathol. 2013;113:56–62. doi: 10.1016/j.jip.2013.01.007. PubMed DOI
Conlon B.H., Frey E., Rosenkranz P., Locke B., Moritz R.F.A., Routtu J. The role of epistatic interactions underpinning resistance to parasitic varroa mites in haploid honey bee (Apis mellifera) drones. J. Evol. Biol. 2018;31:801–809. doi: 10.1111/jeb.13271. PubMed DOI
Broeckx B.J.G., De Smet L., Blacquière T., Maebe K., Khalenkow M., Van Poucke M., Dahle B., Neumann P., Bach Nguyen K., Smagghe G., et al. Honey bee predisposition of resistance to ubiquitous mite infestations. Sci. Rep. 2019;9:7794. doi: 10.1038/s41598-019-44254-8. PubMed DOI PMC
Conlon B.H., Aurori A., Giurgiu A.-I., Kefuss J., Dezmirean D.S., Moritz R.F.A., Routtu J. A gene for resistance to the Varroa mite (acari) in honey bee (Apis mellifera) pupae. Mol. Ecol. 2019;28:2958–2966. doi: 10.1111/mec.15080. PubMed DOI
Haddad N., Mahmud Batainh A., Suleiman Migdadi O., Saini D., Krishnamurthy V., Parameswaran S., Alhamuri Z. Next generation sequencing of Apis mellifera syriaca identifies genes for Varroa resistance and beneficial bee keeping traits. Insect Sci. 2016;23:579–590. doi: 10.1111/1744-7917.12205. PubMed DOI
Teixeira É.W., de Paiva Daibert R.M., Glatzl Júnior L.A., da Silva M.V.G.B., Alves M.L.T.M.F., Evans J.D., Toth A.L. Transcriptomic analysis suggests candidate genes for hygienic behavior in African-derived Apis mellifera honeybees. Apidologie. 2021;52:447–462. doi: 10.1007/s13592-020-00834-6. DOI
Carneiro F.E., Torres R.R., Strapazzon R., Ramírez S.A., Guerra J.C.V., Jr., Koling D.F., Moretto G. Changes in the Reproductive Ability of the Mite Varroa Destructor (Anderson E Trueman) in Africanized Honey Bees (Apis mellifera L.) (Hymenoptera: Apidae) Colonies in Southern Brazil. Neotrop. Entomol. 2007;36:949–952. doi: 10.1590/S1519-566X2007000600018. PubMed DOI
Kence M., Oskay D., Giray T., Kence A. Honey bee colonies from different races show variation in defenses against the varroa mite in a ‘common garden’. Entomol. Exp. Appl. 2013;149:36–43. doi: 10.1111/eea.12109. DOI
Kim J.S., Kim M.J., Kim H.-K., Vung N.N., Kim I. Development of single nucleotide polymorphism markers specific to Apis mellifera (Hymenoptera: Apidae) line displaying high hygienic behavior against Varroa destructor, an ectoparasitic mite. J. Asia-Pac. Entomol. 2019;22:1031–1039. doi: 10.1016/j.aspen.2019.08.005. DOI
Kim J.S., Wang A.R., Kim M.J., Lee K.H., Kim I. Single-nucleotide polymorphism markers in mitochondrial genomes for identifying Varroa destructor-resistant and -susceptible strains of Apis mellifera (Hymenoptera: Apidae) Mitochondrial DNA Part A. 2019;30:477–489. doi: 10.1080/24701394.2018.1551385. PubMed DOI
Spötter A., Gupta P., Mayer M., Reinsch N., Bienefeld K. Genome-wide association study of a Varroa-specific defense behavior in honeybees (Apis mellifera) J. Hered. 2016;107:220–227. doi: 10.1093/jhered/esw005. PubMed DOI PMC
Takayanagi-Kiya S., Kiya T., Kunieda T., Kubo T. Mblk-1 transcription factor family: Its roles in various animals and regulation by NOL4 splice variants in mammals. Int. J. Mol. Sci. 2017;18:246. doi: 10.3390/ijms18020246. PubMed DOI PMC
Boúúaert D.C., Van Poucke M., De Smet L., Verbeke W., de Graaf D.C., Peelman L. qPCR assays with dual-labeled probes for genotyping honey bee variants associated with varroa resistance. BMC Vet. Res. 2021;17:129. doi: 10.1186/s12917-021-02886-x. PubMed DOI PMC
Lefebre R., De Smet L., Tehel A., Paxton R.J., Bossuyt E., Verbeke W., van Dooremalen C., Ulgezen Z.N., van den Bosch T., Schaafsma F., et al. Allele frequencies of genetic variants associated with varroa drone brood resistance (DBR) in Apis mellifera subspecies across the European continent. Insects. 2024;15:419. doi: 10.3390/insects15060419. PubMed DOI PMC
Lefebre R., Broeckx B.J.G., De Smet L., Peelman L., de Graaf D.C. Population-wide modelling reveals prospects of marker-assisted selection for parasitic mite resistance in honey bees. Sci. Rep. 2024;14:7866. doi: 10.1038/s41598-024-58596-5. PubMed DOI PMC
Evison S.E.F., Jensen A.B. The biology and prevalence of fungal diseases in managed and wild bees. Curr. Opin. Insect Sci. 2018;26:105–113. doi: 10.1016/j.cois.2018.02.010. PubMed DOI
Aziz M.A., Alam S. Diseases of Honeybee (Apis mellifera). Melittology—New Advances. IntechOpen; London, UK: 2024. DOI
Holloway B., Sylvester H.A., Bourgeois L., Rinderer T.E. Association of single nucleotide polymorphisms to resistance to chalkbrood in Apis mellifera. J. Apic. Res. 2012;51:154–163. doi: 10.3896/IBRA.1.51.2.02. DOI
Holloway B., Tarver M.R., Rinderer T.E. Fine mapping identifies significantly associating markers for resistance to the honey bee brood fungal disease, Chalkbrood. J. Apic. Res. 2013;52:134–140. doi: 10.3896/IBRA.1.52.3.04. DOI
Itoh T.Q., Tanimura T., Matsumoto A. Membrane-bound transporter controls the circadian transcription of clock genes in Drosophila. Genes Cells. 2011;16:1159–1167. doi: 10.1111/j.1365-2443.2011.01559.x. PubMed DOI
Xia X., You M., Rao X.-J., Yu X.-Q. Insect C-Type Lectins in Innate Immunity. Dev. Comp. Immunol. 2018;83:70–79. doi: 10.1016/j.dci.2017.11.020. PubMed DOI
Galbraith D.A., Yang X., Niño E.L., Yi S., Grozinger C., Schneider D.S. Parallel Epigenomic and Transcriptomic Responses to Viral Infection in Honey Bees (Apis mellifera) PLOS Pathog. 2015;11:e1004713. doi: 10.1371/journal.ppat.1004713. PubMed DOI PMC
Liu Y., Yan L., Li Z., Huang W.-F., Pokhrel S., Liu X., Su S. Larva-mediated chalkbrood resistance-associated single nucleotide polymorphism markers in the honey bee Apis mellifera. Insect Mol. Biol. 2016;25:239–250. doi: 10.1111/imb.12216. PubMed DOI
Buttstedt A., Moritz R.F.A., Erler S. Origin and Function of the Major Royal Jelly Proteins of the Honeybee (Apis mellifera) As Members of the Yellow Gene Family. Biol. Rev. 2014;89:255–269. doi: 10.1111/brv.12052. PubMed DOI
Park H.G., Kim B.Y., Park M.J., Deng Y., Choi Y.S., Lee K.S., Jin B.R. Antibacterial Activity of Major Royal Jelly Proteins of the Honeybee (Apis mellifera) Royal Jelly. J. Asia-Pac. Entomol. 2019;22:737–741. doi: 10.1016/j.aspen.2019.06.005. DOI
Peakall R., Smouse P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics. 2012;28:2537–2539. doi: 10.1093/bioinformatics/bts460. PubMed DOI PMC
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2024. [(accessed on 30 October 2024)]. Available online: https://www.R-project.org/
Mehta B., Daniel R., Phillips C., McNevin D. Forensically relevant SNaPshot® assays for human DNA SNP analysis: A review. Int. J. Leg. Med. 2017;131:21–37. doi: 10.1007/s00414-016-1490-5. PubMed DOI
Mrazkova J., Sistek P., Lochman J., Izakovicova Holla L., Danek Z., Borilova Linhartova P. A SNaPshot Assay for Determination of the Mannose-Binding Lectin Gene Variants and an Algorithm for Calculation of Haplogenotype Combinations. Diagnostics. 2021;11:301. doi: 10.3390/diagnostics11020301. PubMed DOI PMC
Szczepański S., Łabiszak B., Wachowiak W. Development of a SNaPshot assay for the genotyping of organellar SNPs in four closely related pines. Dendrobiology. 2023;90:76–85. doi: 10.12657/denbio.090.006. DOI
Chapman J.R., Hill T., Unckless R.L. Balancing Selection Drives the Maintenance of Genetic Variation in Drosophila Antimicrobial Peptides. Genome Biol. Evol. 2019;11:2691–2701. doi: 10.1093/gbe/evz191. PubMed DOI PMC
Knoll A., Langová L., Přidal A., Urban T. Haplotype diversity in mtDNA of honeybee in the Czech Republic confirms complete replacement of autochthonous population with the C lineage. Insects. 2024;15:495. doi: 10.3390/insects15070495. PubMed DOI PMC