Haplotype Diversity in mtDNA of Honeybee in the Czech Republic Confirms Complete Replacement of Autochthonous Population with the C Lineage
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
QK22020324
The Ministry of Agriculture of the Czech Republic
PubMed
39057228
PubMed Central
PMC11276638
DOI
10.3390/insects15070495
PII: insects15070495
Knihovny.cz E-zdroje
- Klíčová slova
- A lineage, Apis mellifera, cox1, introgression, mitochondrial DNA, population, tRNAleu-cox2,
- Publikační typ
- časopisecké články MeSH
The study aimed to analyze the genetic diversity in the Czech population of Apis mellifera using mitochondrial DNA markers, tRNAleu-cox2 intergenic region and cox1 gene. A total of 308 samples of bees were collected from the entire Czech Republic (from colonies and flowers in 13 different regions). Following sequencing, several polymorphisms and haplotypes were identified. Analysis of tRNAleu-cox2 sequences revealed three DraI haplotypes (C, A1, and A4). The tRNAleu-cox2 region yielded 10 C lineage haplotypes, one of which is a newly described variant. Three A lineage haplotypes were identified, two of which were novel. A similar analysis of cox1 sequences yielded 16 distinct haplotypes (7 new) within the population. The most prevalent tRNAleu-cox2 haplotype identified was C1a, followed by C2a, C2c, C2l, and C2d. For the cox1 locus, the most frequent haplotypes were HpB02, HpB01, HpB03, and HpB04. The haplotype and nucleotide diversity indices were high in both loci, in tRNAleu-cox2 with values of 0.682 and 0.00172, respectively, and in cox1 0.789 and 0.00203, respectively. The Tajima's D values were negative and lower in tRNAleu-cox2 than in cox1. The most frequent haplotypes were uniformly distributed across all regions of the Czech Republic. No haplotype of the indigenous M lineage was identified. High diversity and the occurrence of rare haplotypes indicate population expansion and continuous import of tribal material of the C lineage.
Zobrazit více v PubMed
Whitfield C.W., Behura S.K., Berlocher S.H., Clark A.G., Johnston J.S., Sheppard W.S., Smith D.R., Suarez A.V., Weaver D., Tsutsu N.D. Thrice out of Africa: Ancient and recent expansions of the honey bee, Apis mellifera. Science. 2006;314:642–645. doi: 10.1126/science.1132772. PubMed DOI
Tihelka E., Cai C., Pisani D., Donoghue P.C. Mitochondrial genomes illuminate the evolutionary history of the Western honey bee (Apis mellifera) Sci. Rep. 2020;10:14515. doi: 10.1038/s41598-020-71393-0. PubMed DOI PMC
Han F., Wallberg A., Webster M.T. From where did the Western honeybee (Apis mellifera) originate? Ecol. Evol. 2012;2:1949–1957. doi: 10.1002/ece3.312. PubMed DOI PMC
Chen C., Liu Z., Pan Q., Chen X., Wang H., Guo H., Liu S., Lu H., Tian S., Li R., et al. Genomic analyses reveal demographic history and temperate adaptation of the newly discovered honey bee subspecies Apis mellifera sinisxinyuan n. ssp. Molec. Biol. Evol. 2016;33:1337–1348. doi: 10.1093/molbev/msw017. PubMed DOI PMC
Dogantzis K.A., Tiwari T., Conflitti I.M., Dey A., Patch H.M., Muli E.M., Garnery L., Whitfield C.W., Stolle E., Zayed A. Thrice out of Asia and the adaptive radiation of the western honey bee. Sci. Adv. 2021;7:eabj2151. doi: 10.1126/sciadv.abj2151. PubMed DOI PMC
Franck P., Garnery L., Celebrano G., Solignac M., Cornuet J.M. Hybrid origins of honeybees from Italy (Apis mellifera ligustica) and Sicily (A. m. sicula) Molec. Ecol. 2000;10:379–386. doi: 10.1046/j.1365-294x.2000.00945.x. PubMed DOI
Requier F., Garnery L., Kohl P.L., Njovu H.K., Pirk C.W.W., Crewe R.M., Steffan-Dewenter I. The Conservation of Native Honey Bees Is Crucial. Trends. Ecol. Evol. 2019;34:789–798. doi: 10.1016/j.tree.2019.04.008. PubMed DOI
Bouga M., Harizanis P.C., Kilias G., Alahiotis S. Genetic divergence and phylogenetic relationships of honey bee Apis mellifera (Hymenoptera: Apidae) populations from Greece and Cyprus using PCR–RFLP analysis of three mtDNA segments. Apidologie. 2005;36:335–344. doi: 10.1051/apido:2005021. DOI
Chávez-Galarza J., Henriques D., Johnston J.S., Carneiro M., Rufino J., Patton J.C., Pinto M.A. Revisiting the Iberian honey bee (Apis mellifera iberiensis) contact zone: Maternal and genome-wide nuclear variations provide support for secondary contact from historical refugia. Molec. Ecol. 2015;24:2973–2992. doi: 10.1111/mec.13223. PubMed DOI
Bertrand B., Alburaki M., Legout H., Moulin S., Mougel F., Garnery L. MtDNA COI-COII marker and drone congregation area: An efficient method to establish and monitor honeybee (Apis mellifera L.) conservation centres. Molec. Ecol Resour. 2015;15:673–683. doi: 10.1111/1755-0998.12339. PubMed DOI
Meixner M.D., Costa C., Kryger P., Hatjina F., Bouga M., Ivanova E., Büchler R. Conserving diversity and vitality for honey bee breeding. J. Apic. Res. 2010;49:85–92. doi: 10.3896/IBRA.1.49.1.12. DOI
Pinto M.A., Henriques D., Chávez-Galarza J., Kryger P., Garnery L., van der Zee R., Dahle B., Soland-Reckeweg G., de la Rúa P., Dall’ Olio R., et al. Genetic integrity of the Dark European honey bee (Apis mellifera mellifera) from protected populations: A genome-wide assessment using SNPs and mtDNA sequence data. J. Apic. Res. 2014;53:269–278. doi: 10.3896/IBRA.1.53.2.08. DOI
Büchler R., Costa C., Hatjina F., Andonov S., Meixner M.D., Le Conte Y., Uzunov A., Berg S., Bienkowska M., Bouga M., et al. The influence of genetic origin and its interaction with environmental effects on the survival of Apis mellifera L. colonies in Europe. J. Apic. Res. 2014;53:205–214. doi: 10.3896/IBRA.1.53.2.03. DOI
Krejčík P., Scháňková Š., Mořický J., Chalupa P. Situační a Výhledová Zpráva–Včely. 1st ed. Ministerstvo Zemědělství; Prague, Czech Republic: 2021. [(accessed on 5 February 2024)]. p. 31. Available online: https://eagri.cz/public/portal/-q321807---Er5DAQ_w/situacni-a-vyhledova-zprava-vcely-2021?_linka=a552018.
van Engelsdorp D., Meixner M.D. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J. Inverteb. Pathol. 2010;103:S80–S95. doi: 10.1016/j.jip.2009.06.011. PubMed DOI
Texl P., Vondrák J. Včely 2011—Co ministerstvo do zprávy nenapsalo. Moderní Včelař. 2012;9:4–5.
Goetze G. Die beste Biene: Züchtungs-und Rassen-Kunde der Honigbiene nach dem Heutigen Stand von Wissenschaft und Praxis. Leipzig; Hamburg, Germany: 1940. pp. 64–198.
Ruttner F. Biogeography and Taxonomy of Honeybees. Springer; Berlin, Germany: 1988. p. 284.
Tomšík B. Apiar bioclimatical districts of Bohemia and Moravia and appreciation of the bee-family “Iskra II”. Acta Univ. Agricult. Silvicult. Brno Facultas Agricult. 1949;30:123.
Tomšík B. Včela středoevropská žije v Československu. Včelařství. 1965;18:6–7.
Veselý V. Bewertung der importierten Rasse der Carnicabiene (Apis mellifera carnica Poll.) und der Hybriden derselben mit der hiesigen Biene in den Bedingungen der ČSR. Sci. Stud. Bee Res. Inst. Dol. 1976;7:137–157.
Cori E. O včele ušlechtilé a zušlechtění naší obyčejné včely. [(accessed on 9 April 2024)];Český Včelař. 1875 9:49–51, 61–65, 73–75, 85–89, 101–108, 137–139. Available online: https://dk.uzei.cz/uzei/periodical/uuid:06af2030-9848-418f-971e-c0eb5645c76a.
Cornuet J.M., Garnery L., Solignac M. Putative origin and function of the intergenic region between COI and COII of Apis mellifera L. mitochondrial DNA. Genetics. 1991;128:393–403. doi: 10.1093/genetics/128.2.393. PubMed DOI PMC
Crozier R.H., Crozier Y.C. The mitochondrial genome of the honeybee Apis mellifera: Complete sequence and genome organization. Genetics. 1993;133:97–117. doi: 10.1093/genetics/133.1.97. PubMed DOI PMC
Boardman L., Eimanifar A., Kimball R.T., Braun E.L., Fuchs S., Grünewald B., Ellis J.D. The complete mitochondrial genome of Apis mellifera unicolor (Insecta: Hymenoptera: Apidae), the Malagasy honey bee. Mitochondrial DNA Part B. 2019;4:3286–3287. doi: 10.1080/23802359.2019.1671247. PubMed DOI PMC
Chávez-Galarza J., Garnery L., Henriques D., Neves C.J., Loucif-Ayad W., Pinto M.A. Mitochondrial DNA variation of Apis mellifera iberiensis: Further insights from a large-scale study using sequence data of the tRNAleu-cox2 intergenic region. Apidologie. 2017;48:533–544. doi: 10.1007/s13592-017-0498-2. DOI
Ajao A.M., Nneji L.M., Adeola A.C., Oladipo S.O., Ayoola A.O., Wang Y.Y., Adeniyi A.V., Olademeji Y.U. Genetic diversity and population structure of the native Western African honeybee (Apis mellifera adansonii Latreille, 1804) in Nigeria based on mitochondrial COI sequences. Zool. Anz. 2021;293:17–25. doi: 10.1016/j.jcz.2021.05.007. DOI
Cridland J.M., Tsutsui N.D., Ramírez S.R. The complex demographic history and evolutionary origin of the western honey bee, Apis mellifera. Genome Biol. Evol. 2017;9:457–472. doi: 10.1093/gbe/evx009. PubMed DOI PMC
Cleary D., Szalanski A.L., Trammel C., Williams M.K., Tripodi A., Downey D. Mitochondrial DNA Variation of Feral Honey Bees (L.) from Utah (USA) J. Apic. Sci. 2018;62:223–232. doi: 10.2478/JAS-2018-0019. DOI
Oleksa A., Kusza S., Tofilski A. Mitochondrial DNA Suggests the Introduction of Honeybees of African Ancestry to East-Central Europe. Insects. 2021;12:410. doi: 10.3390/insects12050410. PubMed DOI PMC
Alburaki M., Madella S., Lopez J., Bouga M., Chen Y., vanEngelsdorp D. Honey bee populations of the USA display restrictions in their mtDNA haplotype diversity. Front. Gen. 2023;13:3566. doi: 10.3389/fgene.2022.1092121. PubMed DOI PMC
Sušnik S., Kozmus P., Poklukar J., Meglic V. Molecular characterisation of indigenous Apis mellifera carnica in Slovenia. Apidologie. 2004;35:623–636. doi: 10.1051/apido:2004061. DOI
Muñoz I., Dall’Olio R., Lodesani M., de La Rúa P. Population genetic structure of coastal Croatian honeybees (Apis mellifera carnica) Apidologie. 2009;40:617–626. doi: 10.1051/apido/2009041. DOI
Péntek-Zakar E., Oleksa A., Borowik T., Kusza S. Population structure of honey bees in the Carpathian Basin (Hungary) confirms introgression from surrounding subspecies. Ecol. Evol. 2015;5:5456–5467. doi: 10.1002/ece3.1781. PubMed DOI PMC
Kaskinova M.D., Gaifullina L.R., Saltykova E.S. Haplotypes of the tRNAleu-COII mtDNA Region in Russian Apis mellifera Populations. Animals. 2023;13:2394. doi: 10.3390/ani13142394. PubMed DOI PMC
Hebert P.D., Ratnasingham S., de Waard J.R. Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. Lond. B. 2003;270:S96–S99. doi: 10.1098/rsbl.2003.0025. PubMed DOI PMC
Ratnasingham S., Hebert P.D. The Barcode of Life Data System (http://www.barcodinglife.org. ) Mol. Ecol. Notes. 2007;7:355–364. doi: 10.1111/j.1471-8286.2007.01678.x. PubMed DOI PMC
Cornuet J.M., Garnery L. Mitochondrial DNA variability in honeybees and its phylogeographic implications. Apidologie. 1991;22:627–642. doi: 10.1051/apido:19910606. DOI
Garnery L., Cornuet J.M., Solignac M. Evolutionary history of the honey bee Apis mellifera inferred from mitochondrial DNA analysis. Mol. Ecol. 1992;1:145–154. doi: 10.1111/j.1365-294X.1992.tb00170.x. PubMed DOI
Folmer O., Black M., Hoeh W., Lutz R., Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994;3:294–299. PubMed
Garnery L., Solignac M., Celebrano G., Cornuet J.-M. A simple test using restricted PCR-amplified mitochondrial DNA to study the genetic structure of Apis mellifera L. Experientia. 1993;49:1016–1021. doi: 10.1007/BF02125651. DOI
Okonechnikov K., Golosova O., Fursov M. Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics. 2012;28:1166–1167. doi: 10.1093/bioinformatics/bts091. PubMed DOI
Rozas J., Ferrer-Mata A., Sánchez-DelBarrio J.C., Guirao-Rico S., Librado P., Ramos-Onsins S.E., Sánchez-Gracia A. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Datasets. Mol. Biol. Evol. 2017;34:3299–3302. doi: 10.1093/molbev/msx248. PubMed DOI
Madeira F., Pearce M., Tivey A.R.N., Basutkar P., Lee J., Edbali O., Madhusoodanan N., Kolesnikov A., Lopez R. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res. 2022;50:W276–W279. doi: 10.1093/nar/gkac240. PubMed DOI PMC
Nei M. Molecular Evolutionary Genetics. Columbia University Press; New York, NY, USA: 1987.
Nei M., Tajima F. DNA polymorphism detectable by restriction endonuclease. Genetics. 1981;97:145–163. doi: 10.1093/genetics/97.1.145. PubMed DOI PMC
Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123:595. doi: 10.1093/genetics/123.3.585. PubMed DOI PMC
Paradis E. Analysis of haplotype networks: The randomized minimum spanning tree method. Methods Ecol. Evol. 2018;9:1308–1317. doi: 10.1111/2041-210X.12969. DOI
R Core Team . A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2023. [(accessed on 15 December 2023)]. Available online: https://www.R-project.org/
Tamura K., Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993;10:512–526. doi: 10.1093/oxfordjournals.molbev.a040023. PubMed DOI
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC
Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution. 1985;39:783–791. doi: 10.2307/2408678. PubMed DOI
Pagač M. K dovozu kraňky do českých zemí. Včelařství. 1990;2:31.
Texl P., Přidal A., Rytina L., Holub P., Klíma Z., Gruna B., Matela L., Kala J., Jůzek M., Čížková P. Na stopě původní včely v šumavských hvozdech. (Traces of the indigenous honeybee population in Šumava) Moderní Včelař. 2010;7:116–118.
Texl P., Přidal A. Biodiverzita a hledání tmavé včely na Šumavě. (Biodiversity and looking for the Dark bee in Šumava) Šumava. 2010:18–19.
Fencl J. Master’s Thesis. Agriculture University in Brno; Brno, Czech Republic: 1964. Plemenné Vyhodnocení Naší Včely (Race Evaluation of the Czech Honeybee)
Jílek J. Master’s Thesis. Agriculture University in Brno; Brno, Czech Republic: 1962. Morfologický a Fysiologický Rozbor včel Kmene Moravského a Drahanské Vysočiny. (Morphological and Fysiological Evaluation of the Moravian Honeybee Strain from Drahanská Highlands)
Tanasković M., Erić P., Patenković A., Erić K., Mihajlović M., Tanasić V., Stanisavljević L., Davidović S. MtDNA Analysis Indicates Human-Induced Temporal Changes of Serbian Honey Bees Diversity. Insects. 2021;12:767. doi: 10.3390/insects12090767. PubMed DOI PMC
Muñoz I., De la Rúa P. Wide genetic diversity in Old World honey bees threaten by introgression. Apidologie. 2021;52:200–217. doi: 10.1007/s13592-020-00810-0. DOI
Szalanski A.L., Magnus R.M. Mitochondrial DNA characterization of Africanized honey bee (Apis mellifera L.) populations from the USA. J. Apic. Res. 2010;49:177–185. doi: 10.3896/IBRA.1.49.2.06. DOI
Osterlund E. The Elgon Bee—A Hobbyist and Commercial Bee with African Genes. Am. Bee J. 1993;133:504–507.
Živanský F. Milí ctění členové spolkoví! Včela Brněnská. 1872;6:1–5.
Veselý V. Strain crossing on mating stations and evaluation of further hybridisation by means of artificial insemination. Sci. Stud. Bee Res. Inst. Dol. 1968;5:141–173.
Triseleva T.A., Safonkin A.F., Bykova T.O., Rukhkyan M.J. Intrabreed Diversity and Relationships between Races of the Honey Bee Apis mellifera carpathica and Apis mellifera caucasica. Biol. Bull. Russ. Acad. Sci. 2023;50:546–554. doi: 10.1134/S1062359023601052. DOI
Syromyatnikov M.Y., Borodachev A.V., Kokina A.V., Popov V.N. A Molecular Method for the Identification of Honey Bee Subspecies Used by Beekeepers in Russia. Insects. 2018;9:10. doi: 10.3390/insects9010010. PubMed DOI PMC
Henriques D., Chávez-Galarza J., Quaresma A., Neves C.J., Lopes R.A., Costa C., Costa F.O., Rufino J., Pinto M.A. From the popular tRNAleu-COX2 intergenic region to the mitogenome: Insights from diverse honey bee populations of Europe and North Africa. Apidologie. 2019;50:215–229. doi: 10.1007/s13592-019-00632-9. DOI