Optimization of Tilmicosin-Loaded Nanostructured Lipid Carriers Using Orthogonal Design for Overcoming Oral Administration Obstacle
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
VT2019-2021
UHK
CEP Register
2016YFD0501306
National Key Research and Development Program of China
KYGD202002, Y0201800847
Fundamental Research Funds for the Central Universities
PAPD
Priority Academic Program Development of Jiangsu Higher Education Institutions
PubMed
33669090
PubMed Central
PMC7996536
DOI
10.3390/pharmaceutics13030303
PII: pharmaceutics13030303
Knihovny.cz E-resources
- Keywords
- MDCK-chAbcg2/Abcb1 cell monolayer, intestinal absorption, nanostructured lipid carriers, orthogonal design, tilmicosin,
- Publication type
- Journal Article MeSH
Tilmicosin (TMS) is widely used to treat bacterial infections in veterinary medicine, but the clinical effect is limited by its poor solubility, bitterness, gastric instability, and intestinal efflux transport. Nanostructured lipid carriers (NLCs) are nowadays considered to be a promising vector of therapeutic drugs for oral administration. In this study, an orthogonal experimental design was applied for optimizing TMS-loaded NLCs (TMS-NLCs). The ratios of emulsifier to mixed lipids, stearic acid to oleic acid, drugs to mixed lipids, and cold water to hot emulsion were selected as the independent variables, while the hydrodynamic diameter (HD), drug loading (DL), and entrapment efficiency (EE) were the chosen responses. The optimized TMS-NLCs had a small HD, high DL, and EE of 276.85 ± 2.62 nm, 9.14 ± 0.04%, and 92.92 ± 0.42%, respectively. In addition, a low polydispersity index (0.231 ± 0.001) and high negative zeta potential (-31.10 ± 0.00 mV) indicated the excellent stability, which was further demonstrated by uniformly dispersed spherical nanoparticles under transmission electron microscopy. TMS-NLCs exhibited a slow and sustained release behavior in both simulated gastric juice and intestinal fluid. Furthermore, MDCK-chAbcg2/Abcb1 cell monolayers were successfully established to evaluate their absorption efficiency and potential mechanism. The results of biodirectional transport showed that TMS-NLCs could enhance the cellular uptake and inhibit the efflux function of drug transporters against TMS in MDCK-chAbcg2/Abcb1 cells. Moreover, the data revealed that TMS-NLCs could enter the cells mainly via the caveolae/lipid raft-mediated endocytosis and partially via macropinocytosis. Furthermore, TMS-NLCs showed the same antibacterial activity as free TMS. Taken together, the optimized NLCs were the promising oral delivery carrier for overcoming oral administration obstacle of TMS.
College of Animal Science and Technology Guangxi University 100 Daxuedong Road Nanning 530004 China
School of Pharmacy Bengbu Medical College 2600 Donghai Avenue Bengbu 233030 China
See more in PubMed
Haider M., Abdin S.M., Kamal L., Orive G. Nanostructured lipid carriers for delivery of chemotherapeutics: A review. Pharmaceutics. 2020;12:288. doi: 10.3390/pharmaceutics12030288. PubMed DOI PMC
Pucek A., Tokarek B., Waglewska E., Bazylińska U. Recent advances in the structural design of photosensitive agent formulations using “soft” colloidal nanocarriers. Pharmaceutics. 2020;12:587. doi: 10.3390/pharmaceutics12060587. PubMed DOI PMC
Chen C., Lee Y., Chang S., Tsai Y., Fang J., Hwang T. Oleic acid-loaded nanostructured lipid carrier inhibit neutrophil activities in the presence of albumin and alleviates skin inflammation. Int. J. Nanomed. 2019;14:6539–6553. doi: 10.2147/IJN.S208489. PubMed DOI PMC
Jnaidi R., Almeida A.J., Gonçalves L.M. Solid lipid nanoparticles and nanostructured lipid carriers as smart drug delivery systems in the treatment of Glioblastoma Multiforme. Pharmaceutics. 2020;12:860. doi: 10.3390/pharmaceutics12090860. PubMed DOI PMC
McClements D.J. Advances in nanoparticle and microparticle delivery systems for increasing the dispersibility, stability, and bioactivity of phytochemicals. Biotechnol. Adv. 2020;38:107287. doi: 10.1016/j.biotechadv.2018.08.004. PubMed DOI
Garcês A., Amaral M.H., Sousa Lobo J.M., Silva A.C. Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: A review. Eur. J. Pharm. Sci. 2018;112:159–167. doi: 10.1016/j.ejps.2017.11.023. PubMed DOI
Beloqui A., Solinís M.Á., Rodríguez-Gascón A., Almeida A.J., Préat V. Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomed Nanotechnol. 2016;12:143–161. doi: 10.1016/j.nano.2015.09.004. PubMed DOI
Gaba B., Fazil M., Ali A., Baboota S., Sahni J.K., Ali J. Nanostructured lipid (NLCs) carriers as a bioavailability enhancement tool for oral administration. Drug Deliv. 2015;22:691–700. doi: 10.3109/10717544.2014.898110. PubMed DOI
Ziv G., Shem-Tov M., Glickman A., Winkler M., Saran A. Tilmicosin antibacterial activity and pharmacokinetics in cows. J. Vet. Pharmacol. Ther. 1995;18:340–345. doi: 10.1111/j.1365-2885.1995.tb00601.x. PubMed DOI
IbrahimA E., Abdel-Daim M.M. Modulating effects of Spirulina platensis against tilmicosin-induced cardiotoxicity in mice. Cell J. 2015;17:137–144. PubMed PMC
Al-Qushawi A., Rassouli A., Atyabi F., Peighambari S.M., Esfandyari-Manesh M., Shams G.R., Yazdani A. Preparation and characterization of three tilmicosin-loaded lipid nanoparticles: Physicochemical properties and in-vitro antibacterial activities. Iran. J. Pharm. Res. 2016;15:663–676. PubMed PMC
Vogel G.J., Laudert S.B., Zimmermann A., Guthrie C.A., Mechor G.D., Moore G.M. Effects of tilmicosin on acute undifferentiated respiratory tract disease in newly arrived feedlot cattle. JAVMA J. Am. Vet. Med. A. 1998;212:1919–1924. PubMed
Xie S., Wang F., Wang Y., Zhu L., Dong Z., Wang X., Li X., Zhou W. Acute toxicity study of tilmicosin-loaded hydrogenated castor oil-solid lipid nanoparticles. Part. Fibre. Toxicol. 2011;8:33. doi: 10.1186/1743-8977-8-33. PubMed DOI PMC
Xiong J., Zhu Q., Zhao Y., Yang S., Cao J., Qiu Y. Tilmicosin enteric granules and premix to pigs: Antimicrobial susceptibility testing and comparative pharmacokinetics. J. Vet. Pharmacol. Ther. 2019;42:336–345. doi: 10.1111/jvp.12753. PubMed DOI
Song M., Li Y., Fai C., Cui S., Cui B. The controlled release of tilmicosin from silica nanoparticles. Drug Dev. Ind. Pharm. 2011;37:714. doi: 10.3109/03639045.2010.538059. PubMed DOI
Zhou K., Wang X., Chen D., Yuan Y., Wang S., Li C., Yan Y., Liu Q., Shao L., Huang L., et al. Enhanced treatment effects of tilmicosin against Staphylococcus aureus cow mastitis by self-assembly sodium alginate-chitosan nanogel. Pharmaceutics. 2019;11:524. doi: 10.3390/pharmaceutics11100524. PubMed DOI PMC
Yu J., Wang M., Bhutto R.A., Zhao H., Cohen Stuart M.A., Wang J. Facile preparation of tilmicosin-loaded polymeric nanoparticle with controlled properties and functions. ACS Omega. 2020;5:32366–32372. doi: 10.1021/acsomega.0c04314. PubMed DOI PMC
Sahito B., Zhang Q., Yang H., Peng L., Gao X., Kashif J., Aabdin Z.U., Jiang S., Wang L., Guo D. Synthesis of tilmicosin nanostructured lipid carriers for improved oral delivery in broilers: Physiochemical characterization and cellular permeation. Molecules. 2020;25:315. doi: 10.3390/molecules25020315. PubMed DOI PMC
Zhang Q., Yang H., Sahito B., Li X., Peng L., Gao X., Ji H., Wang L., Jiang S., Guo D. Nanostructured lipid carriers with exceptional gastrointestinal stability and inhibition of P-gp efflux for improved oral delivery of tilmicosin. Colloid Surf. B. 2020;187:110649. doi: 10.1016/j.colsurfb.2019.110649. PubMed DOI
Dai C., Zhang Z., Wang T. Preparation and heat-insulating properties of Al2O3–ZrO2 (Y2O3) hollow fibers derived from cogon using an orthogonal experimental design. RSC Adv. 2019;9:11305. doi: 10.1039/C9RA01176E. PubMed DOI PMC
Zhang Y., Huang J., Liu Y., Guo T., Wang L. Using the lentiviral vector system to stably express chicken P-gp and BCRP in MDCK cells for screening the substrates and studying the interplay of both transporters. Arch. Toxicol. 2018;92:2027–2042. doi: 10.1007/s00204-018-2209-9. PubMed DOI
Zhang Q., Sahito B., Li L., Peng L., Jiang S., Guo D. Determination of encapsulation efficacy and loading capacity of tilmicosin loaded nanostructured lipid carriers by ultrafiltration centrifugation combined with high performance liquid chromatography. Anim. Hus. Vet. Med. 2019;51:56–61.
Neves A.R., Queiroz J.F., Lima S.A.C., Figueiredo F., Fernandes R., Reis S. Cellular uptake and transcytosis of lipid-based nanoparticles across the intestinal barrier: Relevance for oral drug delivery. J. Colloid Interf. Sci. 2016;463:258–265. doi: 10.1016/j.jcis.2015.10.057. PubMed DOI
Beloqui A., Solinís M.Á., Gascón A.R., Pozo-Rodríguez A.D., Rieux A.D., Préat V. Mechanism of transport of saquinavir-loaded nanostructured lipid carriers across the intestinal barrier. J. Control Release. 2013;166:115–123. doi: 10.1016/j.jconrel.2012.12.021. PubMed DOI
He B., Jia Z., Du W., Yu C., Fan Y., Dai W., Yuan L., Zhang H., Wang X., Wang J., et al. The transport pathways of polymer nanoparticles in MDCK epithelial cells. Biomaterials. 2013;34:4309–4326. doi: 10.1016/j.biomaterials.2013.01.100. PubMed DOI
Wassermann L., Halwachs S., Lindner S., Honscha K.U., Honscha W. Determination of functional ABCG2 activity and assessment of drug-ABCG2 interactions in dairy animals using a novel MDCKII in vitro model. J. Pharm. Sci. 2013;102:772–784. doi: 10.1002/jps.23399. PubMed DOI
Roger E., Lagarce F., Garcion E., Benoit J.P. Lipid nanocarriers improve paclitaxel transport throughout human intestinal epithelial cells by using vesicle-mediated transcytosis. J. Control Release. 2009;140:174–181. doi: 10.1016/j.jconrel.2009.08.010. PubMed DOI
Chai G., Xu Y., Chen S., Cheng B., Hu F., You J., Du Y., Yuan H. Transport mechanisms of solid lipid nanoparticles across Caco-2 cell monolayers and their related cytotoxicology. ACS Appl. Mater. Inter. 2016;8:5929–5940. doi: 10.1021/acsami.6b00821. PubMed DOI
Singh I., Swami R., Khan W., Sistla R. Lymphatic system: A prospective area for advanced targeting of particulate drug carriers. Expert Opin. Drug Del. 2014;11:211–229. doi: 10.1517/17425247.2014.866088. PubMed DOI
He Z., Hu Y., Nie T., Tang H., Zhu J., Chen K., Liu L., Leong K.W., Chen Y., Mao H. Size-controlled lipid nanoparticle production using turbulent mixing to enhance oral DNA delivery. Acta Biomater. 2018;81:195–207. doi: 10.1016/j.actbio.2018.09.047. PubMed DOI
Chen C., Tsai T., Huang Z., Fang J. Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers: Physicochemical characterization and pharmacokinetics. Eur. J. Pharm. Biopharm. 2010;74:474–482. doi: 10.1016/j.ejpb.2009.12.008. PubMed DOI
Tiwari R., Pathak K. Nanostructured lipid carrier versus solid lipid nanoparticles of simvastatin: Comparative analysis of characteristics, pharmacokinetics and tissue uptake. Int. J. Pharmaceut. 2011;415:232–243. doi: 10.1016/j.ijpharm.2011.05.044. PubMed DOI
ElShaer A., Mustafa S., Kasar M., Thapa S., Ghatora B., Alany R.G. Nanoparticle-laden contact lens for controlled ocular delivery of prednisolone: Formulation optimization using statistical experimental design. Pharmaceutics. 2016;8:14. doi: 10.3390/pharmaceutics8020014. PubMed DOI PMC
Zhang Y., Shen L., Wang T., Li H., Huang R., Zhang Z., Wang Y., Quan D. Taste masking of water-soluble drug by solid lipid microspheres: A child-friendly system established by reversed lipid-based nanoparticle technique. J. Pharm. Pharmacol. 2020;72:776–786. doi: 10.1111/jphp.13245. PubMed DOI
Wang T., Xue J., Hu Q., Zhou M., Luo Y. Preparation of lipid nanoparticles with high loading capacity and exceptional gastrointestinal stability for potential oral delivery applications. J. Colloid Interf. Sci. 2017;507:119–130. doi: 10.1016/j.jcis.2017.07.090. PubMed DOI
Mehnert W., Karsten M. Solid lipid nanoparticles: Production, characterization and applications. Adv. Drug Deliver. Rev. 2012;64:83–101. doi: 10.1016/j.addr.2012.09.021. PubMed DOI
Bazylińska U., Kulbacka J., Chodaczek G. Nanoemulsion Structural Design in Co-Encapsulation of Hybrid Multifunctional Agents: Influence of the Smart PLGA Polymers on the Nanosystem-Enhanced Delivery and Electro-Photodynamic Treatment. Pharmaceutics. 2019;11:405. doi: 10.3390/pharmaceutics11080405. PubMed DOI PMC
Shakeel F., Ramadan W. Transdermal delivery of anticancer drug caffeine from water-in-oil nanoemulsions. Colloid Surface B. 2009;75:356–362. doi: 10.1016/j.colsurfb.2009.09.010. PubMed DOI
Yan G., Liang Q., Wen X., Peng J., Deng R., Lv L., Ji M., Deng X., Wu L., Feng X., et al. Preparation, characterization, and pharmacokinetics of tilmicosin taste-masked formulation via hot-melt extrusion technology. Colloid Surf. B. 2020;196:111293. doi: 10.1016/j.colsurfb.2020.111293. PubMed DOI
Ayehunie S., Islam A., Cannon C., Landry T., Pudney J., Klausner M., Anderson D.J. Characterization of a hormone-responsive organotypic human vaginal tissue model: Morphologic and immunologic effects. Reprod. Sci. 2015;22:980–990. doi: 10.1177/1933719115570906. PubMed DOI PMC
Gamboa J.M., Leong K.W. In vitro and in vivo models for the study of oral delivery of nanoparticles. Adv. Drug Deliver. Rev. 2013;65:800–810. doi: 10.1016/j.addr.2013.01.003. PubMed DOI PMC
Cho M.J., Thompson D.P., Cramer C.T., Vidmar T.J., Scieszka J.F. The Madin Darby canine kidney (MDCK) epithelial cell monolayer as a model cellular transport barrier. Pharm. Res. 1989;6:71–77. doi: 10.1023/A:1015807904558. PubMed DOI
Yang X., Yang X., Wang Y., Ma L., Zhang Y., Yang X., Wang K. Establishment of Caco-2 cell monolayer model and standard operation procedure for assessing intestinal absorption of chemical components of traditional Chinese medicine. J. Chin. Integr. Med. 2007;5:634–641. doi: 10.3736/jcim20070607. PubMed DOI
Choi Y.H., Yu A. ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development. Curr. Pharm. Des. 2014;20:793–807. doi: 10.2174/138161282005140214165212. PubMed DOI PMC
National Archives & Records Service of Office FDA draft guidance for industry on drug interaction studies-study design, data analysis, implications for dosing, and labeling recommendations. Availab. Fed. Regist. 2012;77:9946.
Ma B., Wang J., Sun J., Li M., Xu H., Sun G., Sun X. Permeability of rhynchophylline across human intestinal cell in vitro. Int. J. Clin. Exp. Patho. 2014;7:1957–1966. PubMed PMC
Chen X., Wang T., Lu M., Zhu L., Wang Y., Zhou W. Preparation and evaluation of tilmicosin-loaded hydrogenated castor oil nanoparticle suspensions of different particle sizes. Int. J. Nanomed. 2014;9:2655–2664. PubMed PMC