Robust Multi-Objective Optimization for Response Surface Models Applied to Direct Low-Value Natural Gas Conversion Processes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33670017
PubMed Central
PMC7926716
DOI
10.3390/e23020248
PII: e23020248
Knihovny.cz E-zdroje
- Klíčová slova
- carbon dioxide oxidative coupling of methane, entropic measure, low-value natural gas, normal boundary intersection, robust multi-objective optimization,
- Publikační typ
- časopisecké články MeSH
The high proportion of CO2/CH4 in low aggregated value natural gas compositions can be used strategically and intelligently to produce more hydrocarbons through oxidative methane coupling (OCM). The main goal of this study was to optimize direct low-value natural gas conversion via CO2-OCM on metal oxide catalysts using robust multi-objective optimization based on an entropic measure to choose the most preferred Pareto optimal point as the problem's final solution. The responses of CH4 conversion, C2 selectivity, and C2 yield are modeled using the response surface methodology. In this methodology, decision variables, e.g., the CO2/CH4 ratio, reactor temperature, wt.% CaO and wt.% MnO in ceria catalyst, are all employed. The Pareto optimal solution was obtained via the following combination of process parameters: CO2/CH4 ratio = 2.50, reactor temperature = 1179.5 K, wt.% CaO in ceria catalyst = 17.2%, wt.% MnO in ceria catalyst = 6.0%. By using the optimal weighting strategy w1 = 0.2602, w2 = 0.3203, w3 = 0.4295, the simultaneous optimal values for the objective functions were: CH4 conversion = 8.806%, C2 selectivity = 51.468%, C2 yield = 3.275%. Finally, an entropic measure used as a decision-making criterion was found to be useful in mapping the regions of minimal variation among the Pareto optimal responses and the results obtained, and this demonstrates that the optimization weights exert influence on the forecast variation of the obtained response.
Department of Production Engineering Federal University of Paraiba João Pessoa 58051 900 Brazil
Faculty of Pharmacy Fluminense Federal University Niterói 24241 000 Brazil
Zobrazit více v PubMed
Hajbabaeia M., Karavalakisa G., Johnsona K., Lee L., Durbina T. Impact of natural gas fuel composition on criteria, toxic, and particle emissions from transit buses equipped with lean burn and stoichiometric engines. Energy. 2013;62:425–434. doi: 10.1016/j.energy.2013.09.040. DOI
Karavalakisa G., Hajbabaeia M., Durbina T., Johnsona K., Zheng Z., Miller W. The effect of natural gas composition on the regulated emissions, gaseous toxic pollutants, and ultrafine particle number emissions from a refuse hauler vehicle. Energy. 2013;50:280–291. doi: 10.1016/j.energy.2012.10.044. DOI
Farzaneh-Gord M., Niazmand A., Deymi-Dashtebayaz M., Rahbari H.R. Effects of natural gas compositions on CNG (compressed natural gas) reciprocating compressors performance. Energy. 2015;90:1152–1162. doi: 10.1016/j.energy.2015.06.056. DOI
Shi J., Yao L., Hu C. Effect of CO2 on the structural variation of Na2WO4/Mn/SiO2 catalyst for oxidative coupling of methane to ethylene. J. Energy Chem. 2015;24:394–400. doi: 10.1016/j.jechem.2015.06.007. DOI
Yuliati L., Yoshida H. Photocatalytic Conversion of Methane. Chem. Soc. Rev. 2008;37:1592–1602. doi: 10.1039/b710575b. PubMed DOI
Esche E., Müller D., Song S., Wozny G. Optimization during the process synthesis: Enabling the oxidative coupling of methane by minimizing the energy required for the carbon dioxide removal. J. Clean. Prod. 2015;91:100–108. doi: 10.1016/j.jclepro.2014.12.034. DOI
Holmen A. Direct conversion of methane to fuels and chemicals. Catal. Today. 2009;142:2–8. doi: 10.1016/j.cattod.2009.01.004. DOI
Fonseca M.N., Pamplona E.O., Valerio V.E.M., Aquila G., Rocha L.C.S., Rotela P., Jr. Oil price volatility: A real option valuation approach in an African oil field. J. Pet. Sci. Eng. 2017;150:297–304. doi: 10.1016/j.petrol.2016.12.024. DOI
Lercher J.A., Bitter J.H., Steghuis A.G., Van Ommen J.G., Seshan K. Methane Utilization via Synthesis Gas Generation—Catalytic Chemistry and Technology. In: Jannsen F.J.J.G., van Santen R.A., editors. Environmental Catalysis. Imperial College Press; London, UK: 1999. pp. 103–126.
Lunsford J.H. Catalytic conversion of methane to more useful chemicals and fuels: A challenge for the 21st century. Catal. Today. 2000;63:165–174. doi: 10.1016/S0920-5861(00)00456-9. DOI
Cheng Z., Sherman B.J., Lo C.S. Carbon dioxide activation and dissociation on ceria (110): A density functional theory study. J. Chem. Phys. 2013;138:014702. doi: 10.1063/1.4773248. PubMed DOI
Krawczyk K., Młotek M., Ulejczyk B., Schmidt-Szałowski K. Methane conversion with carbon dioxide in plasma-catalytic system. Fuel. 2014;117:608–617. doi: 10.1016/j.fuel.2013.08.068. DOI
Shahhosseini H.R., Farsi M., Eini S. Multi-objective optimization of industrial membrane SMR to produce syngas for Fischer-Tropsch production using NSGA-II and decision makings. J. Nat. Gas Sci. Eng. 2016;32:222–238. doi: 10.1016/j.jngse.2016.04.005. DOI
Vatani A., Jabbari E., Askarieh M., Torangi M.A. Kinetic modeling of oxidative coupling of methane over Li/MgO catalyst by genetic algorithm. J. Nat. Gas Sci. Eng. 2014;20:347–356. doi: 10.1016/j.jngse.2014.07.005. DOI
Suhartanto T., York A.P.E., Hanif A., Al-Megren H., Green M.L.H. Potential utilisation of Indonesia’s Natuna natural gas field via methane dry reforming to synthesis gas. Catal. Lett. 2001;71:49–54. doi: 10.1023/A:1016600223749. DOI
Amin N.A.S. Optimization of process parameters and catalyst compositions in carbon dioxide oxidative coupling of methane over CaO–MnO/CeO2 catalyst using response surface methodology. Fuel Process. Technol. 2006;87:449–459.
Havran V., Duduković M.P., Lo C.S. Conversion of Methane and Carbon Dioxide to Higher Value Products. Ind. Eng. Chem. Res. 2011;50:7089–7704. doi: 10.1021/ie2000192. DOI
Spinicci R., Marini P., De Rossi S., Faticanti M., Porta P. Oxidative coupling of methane on LaAlO3 perovskites partially substituted with alkali or alkali-earth ions. J. Mol. Catal. A Chem. 2001;176:253–265. doi: 10.1016/S1381-1169(01)00265-5. DOI
Keller G.E., Bhasin M.M. Synthesis of Ethylene via Oxidative Coupling of Methane: I. Determination of Active Catalysts. J. Catal. 1982;73:9–19. doi: 10.1016/0021-9517(82)90075-6. DOI
Otsuka K., Shimizu Y., Komatsu T. Ba Doped Cerium Oxides Active for Oxidative Coupling of Methane. Chem. Lett. 1987;16:1835–1838. doi: 10.1246/cl.1987.1835. DOI
Hutchings G.J., Scurrell M.S., Woodhouse J.R. Partial oxidation of methane over samarium and lanthanum oxides: A study of the reaction mechanism. Catal. Today. 1989;4:371–381. doi: 10.1016/0920-5861(89)85033-3. DOI
Kuo J.W.C., Kresge C.T., Palermo R.E. Evaluation of direct methane conversion to higher hydrocarbons and oxygenates. Catal. Today. 1989;4:463–470. doi: 10.1016/0920-5861(89)85042-4. DOI
Cailin T., Jingling Z., Liwu L. Roles of oxygen and carbon dioxide on methane oxidative coupling over CaO and Sm2O3 catalysts. App. Catal. A Gen. 1994;115:243–256. doi: 10.1016/0926-860X(94)80356-0. DOI
Asami K., Fujita T., Kusakabe K., Nishiyama Y., Ohtsuka Y. Conversion of methane with carbon dioxide into C2 hydrocarbons over metal oxides. Catal. A Gen. 1995;126:245–255. doi: 10.1016/0926-860X(95)00042-9. DOI
Wang Y., Takahashi Y., Ohtsuka Y. Carbon dioxide-induced selective conversion of methane to C2 hydrocarbons on CeO2 modified with CaO. Catal. A Gen. 1998;172:L203–L206. doi: 10.1016/S0926-860X(98)00122-7. DOI
Wang Y., Takahashi Y., Ohtsuka Y. Carbon dioxide as oxidant for the conversion of methane to ethane and ethylene using modified CeO2 catalyst. J. Catal. 1999;186:160–168. doi: 10.1006/jcat.1999.2538. DOI
Wang Y., Ohtsuka Y. Mn-based binary oxides as catalyst for the conversion of methane to C2 hydrocarbon with carbon dioxide as an oxidant. Appl. Catal. A Gen. 2001;219:183–193. doi: 10.1016/S0926-860X(01)00684-6. DOI
Amin N.A.S. A hybrid numerical approach for multi-responses optimization of process parameters and catalyst compositions in CO2 OCM process over CaO-MnO/CeO2 catalyst. Chem. Eng. J. 2005;106:213–227.
Farsi A., Moradi A., Ghader S., Shadravan V., Manan Z.A. Kinetics investigation of direct natural gas conversion by oxidative coupling of methane. J. Nat. Gas Sci. Eng. 2010;2:270–274. doi: 10.1016/j.jngse.2010.09.003. DOI
Khammona K., Assabumrungrat S., Wiyaratn W. Reviews on Coupling of Methane over Catalysts for Application in C2 Hydrocarbon Production. J. Eng. Appl. Sci. 2012;7:447–455.
Oshima K., Tanaka K., Yabe T., Kikuchi E., Sekine Y. Oxidative coupling of methane using carbon dioxide in an electric field over La–ZrO2 catalyst at low external temperature. Fuel. 2013;107:879–881. doi: 10.1016/j.fuel.2013.01.058. DOI
Crabtree R.H. Aspects of Methane Chemistry. Chem. Rev. 1995;95:987–1007. doi: 10.1021/cr00036a005. DOI
Anderson-Cook C.M., Borror C.M., Montgomery D.C. Response surface design evaluation and comparison. J. Stat. Plan. Inference. 2009;139:629–641. doi: 10.1016/j.jspi.2008.04.004. DOI
Miettinen K. Nonlinear Multiobjective Optimization. Kluwer Academic Publishers; Boston, MA, USA: 1999.
Baril C., Yacout S., Clément B. Design for Six Sigma through collaborative multiobjective optimization. Comput. Ind. Eng. 2011;60:43–55. doi: 10.1016/j.cie.2010.09.015. DOI
Myers R.H., Montgomery D.C., Anderson-Cook C.M. Response Surface Methodology: Process and Product Optimization Using Designed Experiments. 3rd ed. John Wiley & Sons; Hoboken, NJ, USA: 2009.
Shahraki A.F., Noorossana R. Reliability-based robust design optimization: A general methodology using genetic algorithm. Comput. Ind. Eng. 2014;74:199–207. doi: 10.1016/j.cie.2014.05.013. DOI
Shukla P.K., Deb K. On finding multiple Pareto-optimal solutions using classical and evolutionary generating methods. Eur. J. Oper. Res. 2007;181:1630–1652. doi: 10.1016/j.ejor.2006.08.002. DOI
Vahidinasab V., Jadid S. Normal boundary intersection method for suppliers’ strategic bidding in electricity markets: An environmental/economic approach. Energy Convers. Manag. 2010;51:1111–1119. doi: 10.1016/j.enconman.2009.12.019. DOI
Das I., Dennis J.E. Normal boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 1998;8:631–657. doi: 10.1137/S1052623496307510. DOI
Mela K., Tiainen T., Heinisuo M., Baptiste P. Comparative study of multiple criteria decision making methods for building design. Adv. Eng. Inform. 2012;26:716–726. doi: 10.1016/j.aei.2012.03.001. DOI
Szeląg M., Greco S., Słowiński R. Variable consistency dominance-based rough set approach to preference learning in multicriteria ranking. Inf. Sci. 2014;277:525–552. doi: 10.1016/j.ins.2014.02.138. DOI
Ibáñes-Forés V., Bovea M.D., Pérez-Belis V. A holistic review of applied methodologies for assessing and selecting the optimal technological alternative from a sustainability perspective. J. Clean. Prod. 2014;70:259–281. doi: 10.1016/j.jclepro.2014.01.082. DOI
Taboada H.A., Baheranwala F., Coit D.W., Wattanapongsakorn N. Practical solutions for multi-objective optimization: An application to system reliability design problems. Reliab. Eng. Syst. Saf. 2007;92:314–322. doi: 10.1016/j.ress.2006.04.014. DOI
Gaudreault C., Samson R., Stuart P. Implications of choices and interpretation in LCA for multi-criteria process design: De-inked pulp capacity and cogeneration at a paper mill case study. J. Clean. Prod. 2009;17:1535–1546. doi: 10.1016/j.jclepro.2009.07.003. DOI
Pilavachi P.A., Stephanidis S.D., Pappas V.A., Afgan N.H. Multi-criteria evaluation of hydrogen and natural gas fuelled power plant technologies. Appl. Therm. Eng. 2009;29:2228–2234. doi: 10.1016/j.applthermaleng.2008.11.014. DOI
Figueira J.R., Greco S., Słowiński R. Building a set of additive value functions representing a reference preorder and intensities of preference: GRIP method. Eur. J. Oper. Res. 2009;195:460–486. doi: 10.1016/j.ejor.2008.02.006. DOI
Zeleny M. A Concept of compromise solutions and the method of the displaced ideal. Comput. Oper. Res. 1974;1:479–496. doi: 10.1016/0305-0548(74)90064-1. DOI
Zeleny M. The theory of the displaced ideal. In: Zeleny M., editor. Lecture Notes in Economics and Mathematical Systems, No. 123: Multiple Criteria Decision Making—Kyoto. Springer; Berlin/Heidelberg, Germany: 1975.
Rocha L.C.S., Paiva A.P., Balestrassi P.P., Severino G., Rotela P., Jr. Entropy-Based weighting applied to normal boundary intersection approach: The vertical turning of martensitic gray cast iron piston rings case. Acta Sci. Technol. 2015;37:361–371. doi: 10.4025/actascitechnol.v37i4.27819. DOI
Rocha L.C.S., Paiva A.P., Rotela P., Jr., Balestrassi P.P., Campos P.H.S. Robust multiple criteria decision making applied to optimization of AISI H13 hardened steel turning with PCBN wiper tool. Int. J. Adv. Manuf. Technol. 2017;89:2251–2268. doi: 10.1007/s00170-016-9250-8. DOI
Rocha L.C.S., Paiva A.P., Balestrassi P.P., Severino G., Rotela P., Jr. Entropy-Based Weighting for Multiobjective Optimization: An Application on Vertical Turning. Math. Probl. Eng. 2015;2015:608325. doi: 10.1155/2015/608325. DOI
Shannon C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948;27:379–423. doi: 10.1002/j.1538-7305.1948.tb01338.x. DOI
Rocha L.C.S., Paiva A.P., Paiva E.J., Balestrassi P.P. Comparing DEA and principal component analysis in the multiobjective optimization of P-GMAW process. J. Braz. Soc. Mech. Sci. Eng. 2016;38:2513–2526. doi: 10.1007/s40430-015-0355-z. DOI
Rocha L.C.S., Rotela P., Jr., Aquila G., Paiva A.P., Balestrassi P. Toward a robust optimal point selection: A multiple-criteria decision-making process applied to multi-objective optimization using response surface methodology. Eng. Comput. 2020 doi: 10.1007/s00366-020-00973-5. DOI
Amin N.A.S. Screening of MgO- and CeO2-Based Catalysts for Carbon Dioxide Oxidative Coupling of Methane to C2+ Hydrocarbons. J. Nat. Gas Chem. 2004;13:23–35.
Zahran A., Anderson-Cook C.M., Myers R.H. Fraction of Design Space to Assess Prediction Capability of Response Surface Designs. J. Qual. Technol. 2003;35:377–386. doi: 10.1080/00224065.2003.11980235. DOI
Das I., Dennis J.E. A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems. Struct. Optim. 1997;14:63–69. doi: 10.1007/BF01197559. DOI
Rocha L.C., Paiva A.P., Rotela P., Jr., Balestrassi P.P., Campos P.H., Davim J.P. Robust weighting applied to optimization of AISI H13 hardened-steel turning process with ceramic wiper tool: A diversity-based approach. Precis. Eng. 2017;50:235–247. doi: 10.1016/j.precisioneng.2017.05.011. DOI