Cold Adaptation in Antarctic Notothenioids: Comparative Transcriptomics Reveals Novel Insights in the Peculiar Role of Gills and Highlights Signatures of Cobalamin Deficiency
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu srovnávací studie, časopisecké články
Grantová podpora
PNRA16_00099
Italian Program of Antarctic Research
PubMed
33670421
PubMed Central
PMC7918649
DOI
10.3390/ijms22041812
PII: ijms22041812
Knihovny.cz E-zdroje
- Klíčová slova
- Antarctica, Cryonotothenioidea, RNA-seq, cold adaptation, transcobalamin,
- MeSH
- aklimatizace * MeSH
- nedostatek vitaminu B12 * genetika metabolismus MeSH
- ryby * genetika metabolismus MeSH
- transkriptom * MeSH
- vitamin B 12 metabolismus MeSH
- žábry metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Geografické názvy
- Antarktida MeSH
- Názvy látek
- vitamin B 12 MeSH
Far from being devoid of life, Antarctic waters are home to Cryonotothenioidea, which represent one of the fascinating cases of evolutionary adaptation to extreme environmental conditions in vertebrates. Thanks to a series of unique morphological and physiological peculiarities, which include the paradigmatic case of loss of hemoglobin in the family Channichthyidae, these fish survive and thrive at sub-zero temperatures. While some of the distinctive features of such adaptations have been known for decades, our knowledge of their genetic and molecular bases is still limited. We generated a reference de novo assembly of the icefish Chionodraco hamatus transcriptome and used this resource for a large-scale comparative analysis among five red-blooded Cryonotothenioidea, the sub-Antarctic notothenioid Eleginops maclovinus and seven temperate teleost species. Our investigation targeted the gills, a tissue of primary importance for gaseous exchange, osmoregulation, ammonia excretion, and its role in fish immunity. One hundred and twenty genes were identified as significantly up-regulated in Antarctic species and surprisingly shared by red- and white-blooded notothenioids, unveiling several previously unreported molecular players that might have contributed to the evolutionary success of Cryonotothenioidea in Antarctica. In particular, we detected cobalamin deficiency signatures and discussed the possible biological implications of this condition concerning hematological alterations and the heavy parasitic loads typically observed in all Cryonotothenioidea.
Anton Dohrn Zoological Station 80122 Naples Italy
Department of Biology University of Padua 35131 Padua Italy
Department of Cell Biology Charles University 12800 Prague Czech Republic
Department of Life Sciences University of Trieste 34127 Trieste Italy
Institute of Biochemistry and Cell Biology National Research Council of Italy 80131 Naples Italy
International School for Advanced Studies 34136 Trieste Italy
National Institute of Oceanography and Experimental Geophysics 34010 Trieste Italy
Zobrazit více v PubMed
Hüne M., González-Wevar C., Poulin E., Mansilla A., Fernández D.A., Barrera-Oro E. Low Level of Genetic Divergence between Harpagifer Fish Species (Perciformes: Notothenioidei) Suggests a Quaternary Colonization of Patagonia from the Antarctic Peninsula. Polar Biol. 2015;38:607–617. doi: 10.1007/s00300-014-1623-6. DOI
Coppes Petricorena Z.L., Somero G.N. Biochemical Adaptations of Notothenioid Fishes: Comparisons between Cold Temperate South American and New Zealand Species and Antarctic Species. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2007;147:799–807. doi: 10.1016/j.cbpa.2006.09.028. PubMed DOI
Di Prisco G., Eastman J.T., Giordano D., Parisi E., Verde C. Biogeography and Adaptation of Notothenioid Fish: Hemoglobin Function and Globin-Gene Evolution. Gene. 2007;398:143–155. doi: 10.1016/j.gene.2007.02.047. PubMed DOI
Hunter R.L., Halanych K.M. Evaluating Connectivity in the Brooding Brittle Star Astrotoma Agassizii across the Drake Passage in the Southern Ocean. J. Hered. 2008;99:137–148. doi: 10.1093/jhered/esm119. PubMed DOI
Papetti C., Windisch H.S., La Mesa M., Lucassen M., Marshall C., Lamare M.D. Non-Antarctic Notothenioids: Past Phylogenetic History and Contemporary Phylogeographic Implications in the Face of Environmental Changes. Mar. Genom. 2016;25:1–9. doi: 10.1016/j.margen.2015.11.007. PubMed DOI
Near T.J., Dornburg A., Harrington R.C., Oliveira C., Pietsch T.W., Thacker C.E., Satoh T.P., Katayama E., Wainwright P.C., Eastman J.T., et al. Identification of the Notothenioid Sister Lineage Illuminates the Biogeographic History of an Antarctic Adaptive Radiation. BMC Evol. Biol. 2015;15:109. doi: 10.1186/s12862-015-0362-9. PubMed DOI PMC
Peck L.S., Webb K.E., Bailey D.M. Extreme Sensitivity of Biological Function to Temperature in Antarctic Marine Species. Funct. Ecol. 2004;18:625–630. doi: 10.1111/j.0269-8463.2004.00903.x. DOI
Eastman J.T. The Nature of the Diversity of Antarctic Fishes. Polar Biol. 2005;28:93–107. doi: 10.1007/s00300-004-0667-4. DOI
Beers J.M., Jayasundara N. Antarctic Notothenioid Fish: What Are the Future Consequences of “losses” and “Gains” Acquired during Long-Term Evolution at Cold and Stable Temperatures? J. Exp. Biol. 2015;218:1834–1845. doi: 10.1242/jeb.116129. PubMed DOI
Wells R.M.G. Fish Physiology. Volume 22. Academic Press; Cambridge, MA, USA: 2005. Blood-Gas Transport and Hemoglobin Function in Polar Fishes: Does Low Temperature Explain Physiological Characters? pp. 281–316.
Ruud J.T. Vertebrates without Erythrocytes and Blood Pigment. Nature. 1954;173:848. doi: 10.1038/173848a0. PubMed DOI
Near T.J., Parker S.K., Detrich H.W. A Genomic Fossil Reveals Key Steps in Hemoglobin Loss by the Antarctic Icefishes. Mol. Biol. Evol. 2006;23:2008–2016. doi: 10.1093/molbev/msl071. PubMed DOI
Garofalo F., Pellegrino D., Amelio D., Tota B. The Antarctic Hemoglobinless Icefish, Fifty Five Years Later: A Unique Cardiocirculatory Interplay of Disaptation and Phenotypic Plasticity. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2009;154:10–28. doi: 10.1016/j.cbpa.2009.04.621. PubMed DOI
Beers J.M., Borley K.A., Sidell B.D. Relationship among Circulating Hemoglobin, Nitric Oxide Synthase Activities and Angiogenic Poise in Red- and White-Blooded Antarctic Notothenioid Fishes. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2010;156:422–429. doi: 10.1016/j.cbpa.2010.03.027. PubMed DOI
O’Brien K.M., Mueller I.A. The Unique Mitochondrial Form and Function of Antarctic Channichthyid Icefishes. Integr. Comp. Biol. 2010;50:993–1008. doi: 10.1093/icb/icq038. PubMed DOI
Near T.J., MacGuigan D.J., Parker E., Struthers C.D., Jones C.D., Dornburg A. Phylogenetic Analysis of Antarctic Notothenioids Illuminates the Utility of RADseq for Resolving Cenozoic Adaptive Radiations. Mol. Phylogenet. Evol. 2018;129:268–279. doi: 10.1016/j.ympev.2018.09.001. PubMed DOI
Kim B.-M., Amores A., Kang S., Ahn D.-H., Kim J.-H., Kim I.-C., Lee J.H., Lee S.G., Lee H., Lee J., et al. Antarctic Blackfin Icefish Genome Reveals Adaptations to Extreme Environments. Nat. Ecol. Evol. 2019;3:469–478. doi: 10.1038/s41559-019-0812-7. PubMed DOI PMC
Di Prisco G., Macdonald J.A., Brunori M. Antarctic Fishes Survive Exposure to Carbon Monoxide. Experientia. 1992;48:473–475. doi: 10.1007/BF01928166. PubMed DOI
Shin S.C., Ahn D.H., Kim S.J., Pyo C.W., Lee H., Kim M.-K., Lee J., Lee J.E., Detrich H.W., Postlethwait J.H., et al. The Genome Sequence of the Antarctic Bullhead Notothen Reveals Evolutionary Adaptations to a Cold Environment. Genome Biol. 2014;15:468. doi: 10.1186/s13059-014-0468-1. PubMed DOI PMC
Ahn D.-H., Shin S.C., Kim B.-M., Kang S., Kim J.-H., Ahn I., Park J., Park H. Draft Genome of the Antarctic Dragonfish, Parachaenichthys Charcoti. GigaScience. 2017;6 doi: 10.1093/gigascience/gix060. PubMed DOI PMC
Bargelloni L., Babbucci M., Ferraresso S., Papetti C., Vitulo N., Carraro R., Pauletto M., Santovito G., Lucassen M., Mark F.C., et al. Draft Genome Assembly and Transcriptome Data of the Icefish Chionodraco Myersi Reveal the Key Role of Mitochondria for a Life without Hemoglobin at Subzero Temperatures. Commun. Biol. 2019;2:1–11. doi: 10.1038/s42003-019-0685-y. PubMed DOI PMC
Bilyk K.T., Cheng C.-H.C. Model of Gene Expression in Extreme Cold—Reference Transcriptome for the High-Antarctic Cryopelagic Notothenioid Fish Pagothenia Borchgrevinki. BMC Genom. 2013;14:634. doi: 10.1186/1471-2164-14-634. PubMed DOI PMC
Gerdol M., Buonocore F., Scapigliati G., Pallavicini A. Analysis and Characterization of the Head Kidney Transcriptome from the Antarctic Fish Trematomus Bernacchii (Teleostea, Notothenioidea): A Source for Immune Relevant Genes. Mar. Genom. 2015;20:13–15. doi: 10.1016/j.margen.2014.12.005. PubMed DOI
Coppe A., Agostini C., Marino I.A.M., Zane L., Bargelloni L., Bortoluzzi S., Patarnello T. Genome Evolution in the Cold: Antarctic Icefish Muscle Transcriptome Reveals Selective Duplications Increasing Mitochondrial Function. Genome Biol. Evol. 2013;5:45–60. doi: 10.1093/gbe/evs108. PubMed DOI PMC
Xu Q., Cai C., Hu X., Liu Y., Guo Y., Hu P., Chen Z., Peng S., Zhang D., Jiang S., et al. Evolutionary Suppression of Erythropoiesis via the Modulation of TGF-β Signalling in an Antarctic Icefish. Mol. Ecol. 2015;24:4664–4678. doi: 10.1111/mec.13344. PubMed DOI
Song W., Li L., Huang H., Jiang K., Zhang F., Wang L., Zhao M., Ma L. Tissue-Based Transcriptomics of Chionodraco Hamatus: Sequencing, de Novo Assembly, Annotation and Marker Discovery. J. Fish Biol. 2019;94:251–260. doi: 10.1111/jfb.13882. PubMed DOI
Bilyk K.T., Cheng C.-H.C. RNA-Seq Analyses of Cellular Responses to Elevated Body Temperature in the High Antarctic Cryopelagic Nototheniid Fish Pagothenia Borchgrevinki. Mar. Genom. 2014;18:163–171. doi: 10.1016/j.margen.2014.06.006. PubMed DOI
Huth T.J., Place S.P. RNA-Seq Reveals a Diminished Acclimation Response to the Combined Effects of Ocean Acidification and Elevated Seawater Temperature in Pagothenia Borchgrevinki. Mar. Genom. 2016;28:87–97. doi: 10.1016/j.margen.2016.02.004. PubMed DOI
Wilkie M.P. Mechanisms of Ammonia Excretion Across Fish Gills. Comp. Biochem. Physiol. A Physiol. 1997;118:39–50. doi: 10.1016/S0300-9629(96)00407-0. DOI
Evans D.H. Teleost Fish Osmoregulation: What Have We Learned since August Krogh, Homer Smith, and Ancel Keys. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008;295:R704–R713. doi: 10.1152/ajpregu.90337.2008. PubMed DOI
Gomez D., Sunyer J.O., Salinas I. The Mucosal Immune System of Fish: The Evolution of Tolerating Commensals While Fighting Pathogens. Fish Shellfish Immunol. 2013;35:1729–1739. doi: 10.1016/j.fsi.2013.09.032. PubMed DOI PMC
Hoar W.S., Randall D.J. Gills Anatomy, Gas Transfer, and Acid-Base Regulation. Volume 10 Academic Press; Cambridge, MA, USA: 1984. Fish Physiology.
Nuñez Ortiz N., Gerdol M., Stocchi V., Marozzi C., Randelli E., Bernini C., Buonocore F., Picchietti S., Papeschi C., Sood N., et al. T Cell Transcripts and T Cell Activities in the Gills of the Teleost Fish Sea Bass (Dicentrarchus Labrax) Dev. Comp. Immunol. 2014;47:309–318. doi: 10.1016/j.dci.2014.07.015. PubMed DOI
Greibe E., Fedosov S., Nexo E. The Cobalamin-Binding Protein in Zebrafish Is an Intermediate between the Three Cobalamin-Binding Proteins in Human. PLoS ONE. 2012;7 doi: 10.1371/journal.pone.0035660. PubMed DOI PMC
Lopes-Marques M., Ruivo R., Delgado I., Wilson J.M., Aluru N., Castro L.F.C. Basal Gnathostomes Provide Unique Insights into the Evolution of Vitamin B12 Binders. Genome Biol. Evol. 2014;7:457–464. doi: 10.1093/gbe/evu289. PubMed DOI PMC
Wuerges J., Garau G., Geremia S., Fedosov S.N., Petersen T.E., Randaccio L. Structural Basis for Mammalian Vitamin B12 Transport by Transcobalamin. Proc. Natl. Acad. Sci. USA. 2006;103:4386–4391. doi: 10.1073/pnas.0509099103. PubMed DOI PMC
Wuerges J., Geremia S., Randaccio L. Structural Study on Ligand Specificity of Human Vitamin B12 Transporters. Biochem. J. 2007;403:431–440. doi: 10.1042/BJ20061394. PubMed DOI PMC
Fagerberg L., Hallström B.M., Oksvold P., Kampf C., Djureinovic D., Odeberg J., Habuka M., Tahmasebpoor S., Danielsson A., Edlund K., et al. Analysis of the Human Tissue-Specific Expression by Genome-Wide Integration of Transcriptomics and Antibody-Based Proteomics. Mol. Cell. Proteom. 2014;13:397–406. doi: 10.1074/mcp.M113.035600. PubMed DOI PMC
Hall C.A. Transcobalamins I and II as Natural Transport Proteins of Vitamin B12. J. Clin. Invest. 1975;56:1125–1131. doi: 10.1172/JCI108187. PubMed DOI PMC
Zdzitowiecki K., Cielecka D. Digenea of Fishes of the Weddell Sea. II. The Genus Macvicaria (Opecoelidae) Acta Parasitol. 1997;42:77–83.
Laskowski Z., Rocka A., Zdzitowiecki K., Ozouf-Costaz C. Occurence of Endoparasitic Worms in Dusky Notothen, Trematomus Newnesi (Actinopterygii Nototheniidae), at Adélie Land, Antarctica. Pol. Polar Res. 2007;28:37–42.
Coscia M.R., Oreste U. Presence of Antibodies Specific for Proteins Of Contracaecum Osculatum (Rudolphi, 1908) in Plasma of Several Antarctic Teleosts. Fish Shellfish Immunol. 1998;8:295–302. doi: 10.1006/fsim.1998.0140. DOI
Coscia M.R., Oreste U. Plasma and Bile Antibodies of the Teleost Trematomus Bernacchii Specific for the Nematode Pseudoterranova Decipiens. Dis. Aquat. Organ. 2000;41:37–42. doi: 10.3354/dao041037. PubMed DOI
Zdzitowiecki K. New Data on the Occurrence of Fish Endoparasitic Worms off Adelie Land, Antarctica. Pol. Polar Res. 2001;22:159–165.
Santoro M., Mattiucci S., Work T., Cimmaruta R., Nardi V., Cipriani P., Bellisario B., Nascetti G. Parasitic Infection by Larval Helminths in Antarctic Fishes: Pathological Changes and Impact on the Host Body Condition Index. Dis. Aquat. Organ. 2013;105:139–148. doi: 10.3354/dao02626. PubMed DOI
Santoro M., Mattiucci S., Cipriani P., Bellisario B., Romanelli F., Cimmaruta R., Nascetti G. Parasite Communities of Icefish (Chionodraco Hamatus) in the Ross Sea (Antarctica): Influence of the Host Sex on the Helminth Infracommunity Structure. PLoS ONE. 2014;9:e88876. doi: 10.1371/journal.pone.0088876. PubMed DOI PMC
Weinstein P.P., Jaffe J.J. Cobalamin and Folate Metabolism in Helminths. Blood Rev. 1987;1:245–253. doi: 10.1016/0268-960X(87)90026-9. PubMed DOI
Nyberg W. The Uptake and Distribution of Co60-Labeled Vitamin B12 by the Fish Tapeworm, Diphyllobothrium Latum. Exp. Parasitol. 1958;7:178–190. doi: 10.1016/0014-4894(58)90015-8. PubMed DOI
Björkenheim B. Optic Neuropathy Caused by Vitamin-B12 Deficiency in Carriers of the Fish Tapeworm, Diphyllobothrium Latum. Lancet. 1966;1:688–690. doi: 10.1016/S0140-6736(66)91630-8. PubMed DOI
Vuylsteke P., Bertrand C., Verhoef G.E.G., Vandenberghe P. Case of Megaloblastic Anemia Caused by Intestinal Taeniasis. Ann. Hematol. 2004;83:487–488. doi: 10.1007/s00277-003-0839-2. PubMed DOI
Caterino M., Pastore A., Strozziero M.G., Di Giovamberardino G., Imperlini E., Scolamiero E., Ingenito L., Boenzi S., Ceravolo F., Martinelli D., et al. The Proteome of CblC Defect: In Vivo Elucidation of Altered Cellular Pathways in Humans. J. Inherit. Metab. Dis. 2015;38:969–979. doi: 10.1007/s10545-014-9806-4. PubMed DOI
Kuklina M.M., Kuklin V.V. Hematology and Blood Chemistry of the Herring Gull Laurus Argentatus Infested by Cestodes Diphyllobothrium dentriticum (Cestoda: Diphyllobothriiidae) Parazitologiia. 2016;50:365–375. PubMed
Miller J.W., Nadeau M.R., Smith D., Selhub J. Vitamin B-6 Deficiency vs Folate Deficiency: Comparison of Responses to Methionine Loading in Rats. Am. J. Clin. Nutr. 1994;59:1033–1039. doi: 10.1093/ajcn/59.5.1033. PubMed DOI
Jakubowski H. The Pathophysiological Hypothesis of Homocysteine Thiolactone-Mediated Vascular Disease. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2008;59:155–167. PubMed
Zimny J., Sikora M., Guranowski A., Jakubowski H. Protective Mechanisms against Homocysteine Toxicity: The Role of Bleomycin Hydrolase. J. Biol. Chem. 2006;281:22485–22492. doi: 10.1074/jbc.M603656200. PubMed DOI
Field M.S., Anderson D.D., Stover P.J. Mthfs Is an Essential Gene in Mice and a Component of the Purinosome. Front. Genet. 2011;2:36. doi: 10.3389/fgene.2011.00036. PubMed DOI PMC
Fang H., Kang J., Zhang D. Microbial Production of Vitamin B12: A Review and Future Perspectives. Microb. Cell Fact. 2017;16 doi: 10.1186/s12934-017-0631-y. PubMed DOI PMC
Santovito G., Marino S.M., Sattin G., Cappellini R., Bubacco L., Beltramini M. Cloning and Characterization of Cytoplasmic Carbonic Anhydrase from Gills of Four Antarctic Fish: Insights into the Evolution of Fish Carbonic Anhydrase and Cold Adaptation. Polar Biol. 2012;35:1587–1600. doi: 10.1007/s00300-012-1200-9. DOI
Maffia M., Rizzello A., Acierno R., Rollo M., Chiloiro R., Storelli C. Carbonic Anhydrase Activity in Tissues of the Icefish Chionodraco Hamatus and of the Red-Blooded Teleosts Trematomus Bernacchii and Anguilla Anguilla. J. Exp. Biol. 2001;204:3983–3992. PubMed
Marino S., Hayakawa K., Hatada K., Benfatto M., Rizzello A., Maffia M., Bubacco L. Structural Features That Govern Enzymatic Activity in Carbonic Anhydrase from a Low-Temperature Adapted Fish, Chionodraco Hamatus. Biophys. J. 2007;93:2781–2790. doi: 10.1529/biophysj.107.107540. PubMed DOI PMC
Gilmour K.M. New Insights into the Many Functions of Carbonic Anhydrase in Fish Gills. Respir. Physiol. Neurobiol. 2012;184:223–230. doi: 10.1016/j.resp.2012.06.001. PubMed DOI
Egginton S., Taylor E.W., Wilson R.W., Johnston I.A., Moon T.W. Stress Response in the Antarctic Teleosts (Notothenia Neglecta Nybelin and N. Rossii Richardson) J. Fish Biol. 1991;38:225–235. doi: 10.1111/j.1095-8649.1991.tb03108.x. DOI
Harter T.S., Sackville M.A., Wilson J.M., Metzger D.C.H., Egginton S., Esbaugh A.J., Farrell A.P., Brauner C.J. A Solution to Nature’s Haemoglobin Knockout: A Plasma-Accessible Carbonic Anhydrase Catalyses CO2 Excretion in Antarctic Icefish Gills. J. Exp. Biol. 2018;221 doi: 10.1242/jeb.190918. PubMed DOI
Tufts B.L., Gervais M.R., Staebler M., Weaver J. Subcellular Distribution and Characterization of Gill Carbonic Anhydrase and Evidence for a Plasma Carbonic Anhydrase Inhibitor in Antarctic Fish. J. Comp. Physiol. B. 2002;172:287–295. doi: 10.1007/s00360-002-0253-4. PubMed DOI
Cuellar J., Yébenes H., Parker S.K., Carranza G., Serna M., Valpuesta J.M., Zabala J.C., Detrich H.W. Assisted Protein Folding at Low Temperature: Evolutionary Adaptation of the Antarctic Fish Chaperonin CCT and Its Client Proteins. Biol. Open. 2014;3:261–270. doi: 10.1242/bio.20147427. PubMed DOI PMC
Hofmann G.E., Buckley B.A., Airaksinen S., Keen J.E., Somero G.N. Heat-Shock Protein Expression Is Absent in the Antarctic Fish Trematomus Bernacchii (Family Nototheniidae) J. Exp. Biol. 2000;203:2331–2339. PubMed
Place S.P., Zippay M.L., Hofmann G.E. Constitutive Roles for Inducible Genes: Evidence for the Alteration in Expression of the Inducible Hsp70 Gene in Antarctic Notothenioid Fishes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004;287:R429–R436. doi: 10.1152/ajpregu.00223.2004. PubMed DOI
Chen Z., Cheng C.-H.C., Zhang J., Cao L., Chen L., Zhou L., Jin Y., Ye H., Deng C., Dai Z., et al. Transcriptomic and Genomic Evolution under Constant Cold in Antarctic Notothenioid Fish. Proc. Natl. Acad. Sci. USA. 2008;105:12944–12949. doi: 10.1073/pnas.0802432105. PubMed DOI PMC
Schönbrunner E.R., Schmid F.X. Peptidyl-Prolyl Cis-Trans Isomerase Improves the Efficiency of Protein Disulfide Isomerase as a Catalyst of Protein Folding. Proc. Natl. Acad. Sci. USA. 1992;89:4510–4513. doi: 10.1073/pnas.89.10.4510. PubMed DOI PMC
Kikuchi K., Yamashita M., Watabe S., Aida K. The Warm Temperature Acclimation-Related 65-KDa Protein, Wap65, in Goldfish and Its Gene Expression. J. Biol. Chem. 1995;270:17087–17092. doi: 10.1074/jbc.270.29.17087. PubMed DOI
Choi C.Y., An K.W., Choi Y.K., Jo P.G., Min B.H. Expression of Warm Temperature Acclimation-Related Protein 65-KDa (Wap65) MRNA, and Physiological Changes with Increasing Water Temperature in Black Porgy, Acanthopagrus Schlegeli. J. Exp. Zool. Part A Ecol. Genet. Physiol. 2008;309A:206–214. doi: 10.1002/jez.449. PubMed DOI
Chattopadhyay M.K., Kern R., Mistou M.-Y., Dandekar A.M., Uratsu S.L., Richarme G. The Chemical Chaperone Proline Relieves the Thermosensitivity of a DnaK Deletion Mutant at 42 Degrees C. J. Bacteriol. 2004;186:8149–8152. doi: 10.1128/JB.186.23.8149-8152.2004. PubMed DOI PMC
Xu C., Ng D.T.W. Glycosylation-Directed Quality Control of Protein Folding. Nat. Rev. Mol. Cell Biol. 2015;16:742. doi: 10.1038/nrm4073. PubMed DOI
Jayaprakash N.G., Surolia A. Role of Glycosylation in Nucleating Protein Folding and Stability. Biochem. J. 2017;474:2333–2347. doi: 10.1042/BCJ20170111. PubMed DOI
Peck L.S. A Cold Limit to Adaptation in the Sea. Trends Ecol. Evol. 2016;31:13–26. doi: 10.1016/j.tree.2015.09.014. PubMed DOI
Gogliettino M., Balestrieri M., Riccio A., Facchiano A., Fusco C., Palazzo V.C., Rossi M., Cocca E., Palmieri G. Uncommon Functional Properties of the First Piscine 26S Proteasome from the Antarctic Notothenioid Trematomus Bernacchii. Biosci. Rep. 2016;36 doi: 10.1042/BSR20160022. PubMed DOI PMC
Lewis J.M., Grove T.J., O’Brien K.M. Energetic Costs of Protein Synthesis Do Not Differ between Red- and White-Blooded Antarctic Notothenioid Fishes. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2015;187:177–183. doi: 10.1016/j.cbpa.2015.05.026. PubMed DOI
Zhang Y.-A., Salinas I., Li J., Parra D., Bjork S., Xu Z., LaPatra S.E., Bartholomew J., Sunyer J.O. IgT, a Primitive Immunoglobulin Class Specialized in Mucosal Immunity. Nat. Immunol. 2010;11:827–835. doi: 10.1038/ni.1913. PubMed DOI PMC
Ametrano A., Gerdol M., Vitale M., Greco S., Oreste U., Coscia M.R. Fitting Together the Evolutionary Puzzle Pieces of the Immunoglobulin T Gene from Antarctic Fishes. Preprints. 2020 doi: 10.20944/preprints202011.0685.v1. DOI
Biscotti M.A., Gerdol M., Canapa A., Forconi M., Olmo E., Pallavicini A., Barucca M., Schartl M. The Lungfish Transcriptome: A Glimpse into Molecular Evolution Events at the Transition from Water to Land. Sci. Rep. 2016;6 doi: 10.1038/srep21571. PubMed DOI PMC
Carniel F.C., Gerdol M., Montagner A., Banchi E., De Moro G., Manfrin C., Muggia L., Pallavicini A., Tretiach M. New Features of Desiccation Tolerance in the Lichen Photobiont Trebouxia Gelatinosa Are Revealed by a Transcriptomic Approach. Plant Mol. Biol. 2016;91:319–339. doi: 10.1007/s11103-016-0468-5. PubMed DOI
Simão F.A., Waterhouse R.M., Ioannidis P., Kriventseva E.V., Zdobnov E.M. BUSCO: Assessing Genome Assembly and Annotation Completeness with Single-Copy Orthologs. Bioinform. Oxf. Engl. 2015;31:3210–3212. doi: 10.1093/bioinformatics/btv351. PubMed DOI
Infante C., Matsuoka M.P., Asensio E., Cañavate J.P., Reith M., Manchado M. Selection of Housekeeping Genes for Gene Expression Studies in Larvae from Flatfish Using Real-Time PCR. BMC Mol. Biol. 2008;9:28. doi: 10.1186/1471-2199-9-28. PubMed DOI PMC
Øvergård A.-C., Nerland A.H., Patel S. Evaluation of Potential Reference Genes for Real Time RT-PCR Studies in Atlantic Halibut (Hippoglossus Hippoglossus L.); during Development, in Tissues of Healthy and NNV-Injected Fish, and in Anterior Kidney Leucocytes. BMC Mol. Biol. 2010;11:36. doi: 10.1186/1471-2199-11-36. PubMed DOI PMC
Musser J.M., Wagner G.P. Character Trees from Transcriptome Data: Origin and Individuation of Morphological Characters and the so-Called “Species Signal”. J. Exp. Zoolog. B Mol. Dev. Evol. 2015;324:588–604. doi: 10.1002/jez.b.22636. PubMed DOI
Pankey M.S., Minin V.N., Imholte G.C., Suchard M.A., Oakley T.H. Predictable Transcriptome Evolution in the Convergent and Complex Bioluminescent Organs of Squid. Proc. Natl. Acad. Sci. USA. 2014;111:E4736–E4742. doi: 10.1073/pnas.1416574111. PubMed DOI PMC
Bray N.L., Pimentel H., Melsted P., Pachter L. Near-Optimal Probabilistic RNA-Seq Quantification. Nat. Biotechnol. 2016;34:525–527. doi: 10.1038/nbt.3519. PubMed DOI
Edgar R.C. MUSCLE: Multiple Sequence Alignment with High Accuracy and High Throughput. Nucleic Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC
Posada D., Crandall K.A. MODELTEST: Testing the Model of DNA Substitution. Bioinform. Oxf. Engl. 1998;14:817–818. doi: 10.1093/bioinformatics/14.9.817. PubMed DOI
Huelsenbeck J.P., Ronquist F. MRBAYES: Bayesian Inference of Phylogenetic Trees. Bioinform. Oxf. Engl. 2001;17:754–755. doi: 10.1093/bioinformatics/17.8.754. PubMed DOI