Interaction of Conazole Pesticides Epoxiconazole and Prothioconazole with Human and Bovine Serum Albumin Studied Using Spectroscopic Methods and Molecular Modeling

. 2021 Feb 15 ; 22 (4) : . [epub] 20210215

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33672042

Grantová podpora
ITMS2014+ 313011D103 European Regional Development Fund
1/0242/19 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
012 UVLF-4/2018 Kultúrna a Edukacná Grantová Agentúra MŠVVaŠ SR

The interactions of epoxiconazole and prothioconazole with human serum albumin and bovine serum albumin were investigated using spectroscopic methods complemented with molecular modeling. Spectroscopic techniques showed the formation of pesticide/serum albumin complexes with the static type as the dominant mechanism. The association constants ranged from 3.80 × 104-6.45 × 105 L/mol depending on the pesticide molecule (epoxiconazole, prothioconazole) and albumin type (human or bovine serum albumin). The calculated thermodynamic parameters revealed that the binding of pesticides into serum albumin macromolecules mainly depended on hydrogen bonds and van der Waals interactions. Synchronous fluorescence spectroscopy and the competitive experiments method showed that pesticides bind to subdomain IIA, near tryptophan; in the case of bovine serum albumin also on the macromolecule surface. Concerning prothioconazole, we observed the existence of an additional binding site at the junction of domains I and III of serum albumin macromolecules. These observations were corroborated well by molecular modeling predictions. The conformation changes in secondary structure were characterized by circular dichroism, three-dimensional fluorescence, and UV/VIS absorption methods.

Zobrazit více v PubMed

U.S. Environmental Protection Agency. [(accessed on 10 August 2006)]; Available online: https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-123909_01-Aug-06.pdf.

Goetz A.K., Ren H., Schmid J.E., Blystone C.R., Thillainadarajah I., Best D.S., Nichols H.P., Strader L.F., Wolf D.C., Narotsky M.G., et al. Disruption of testosterone homeostasis as a mode of action for the reproductive toxicity of triazole fungicides in the male rat. Toxicol. Sci. 2006;95:1:227–239. doi: 10.1093/toxsci/kfl124. PubMed DOI

Menegola E., Broccia M.L., Di Renzo F., Giavini E. Postulated pathogenic pathway in triazole fungicide induced dysmorphogenic effects. Reprod. Toxicol. 2006;22:186–195. doi: 10.1016/j.reprotox.2006.04.008. PubMed DOI

Arthur J., Acierto A.M., Assaad A. Epoxiconazole: Tolerance on Bananas and Coffee Exported to the US. US Environmental Protection Agency, Office of Pesticide Programs, Health Effect Division; Washington, DC, USA: 2005.

Schneider S., Hofmann T., Stinchcombe S., Moreno M.C.R., Fegert I., Strauss V., Groters S., Fabian E., Thiaener J., Fussell K.C., et al. Species differences in developmental toxicity of epoxiconazole and its relevance to humans. Birth Defects Res. B Dev. Reprod. Toxicol. 2013;98:230–246. doi: 10.1002/bdrb.21058. PubMed DOI

Taxvig C., Hass U., Axelstad M., Dalgaard M., Boberg J., Andeasen H.R., Vinggaard A.M. Endocrine-disrupting activities in vivo of the fungicides tebuconazole and epoxiconazole. Toxicol. Sci. 2007;100:464–473. doi: 10.1093/toxsci/kfm227. PubMed DOI

Silva D., Cortez C.M., Cunha-Bastos J., Louro S.R. Methyl parathion interaction with human and bovine serum albumin. Toxicol. Lett. 2004;147:53–61. doi: 10.1016/j.toxlet.2003.10.014. PubMed DOI

Zhang Z., Gao B., He Z., Li L., Zhang Q., Kaziem A.E., Wang M. Stereoselective bioactivity of the chiral triazole fungicide prothioconazole and its metabolite. Pestic. Biochem. Phys. 2019;160:112–118. doi: 10.1016/j.pestbp.2019.07.012. PubMed DOI

Ghisari M., Long M., Tabbo A., Bonefeld-Jørgensen E.C. Effects of currently used pesticides and their mixtures on the function of thyroid hormone and aryl hydrocarbon receptor in cell culture. Toxicol. Appl. Pharmacol. 2015;284:292–303. doi: 10.1016/j.taap.2015.02.004. PubMed DOI

Schwarzbacherová V., Šiviková K., Drážovská M., Dianovský J. Evaluation of DNA damage and cytotoxicity induced by triazole fungicide in cultured bovine lymphocytes. Caryologia. 2015;68:233–238. doi: 10.1080/00087114.2015.1032613. DOI

Carter D.C., Ho J.X. Structure of serum albumin. Adv. Protein Chem. 1994;45:153–203. PubMed

Tian J., Liu J., He W., Hu Z., Yao X., Chen X. Probing the binding of scutellarin to human serum albumin by circular dichroism, fluorescence spectroscopy, FTIR, and molecular modelling method. Biomacromolecules. 2004;5:1956–1961. doi: 10.1021/bm049668m. PubMed DOI

Olson R.E., Christ D.D. Plasma protein binding of drugs. Annu. Rep. Med. Chem. 1996;31:327–336.

Bolel P., Mahapatra N., Halder M. Optical spectroscopic exploration of binding of cochinealred A with two homologous serum albumins. J. Agric. Food Chem. 2012;60:3727–3734. doi: 10.1021/jf205219w. PubMed DOI

Mallick A., Haldar B., Chattopadhyay N. Spectroscopic investigation on the interaction of ICT probe 3-acetyl-4-oxo-6,7-dihydro-12Hindolo-[2,3-a]quinolizine with serum albumins. J. Phys. Chem. B. 2005;109:14683–14690. doi: 10.1021/jp051367z. PubMed DOI

Zhou X.M., Lü W.J., Su L., Shan Z.J., Chen X.G. Binding of phthalate plasticizers to human serum albumin in vitro: A multispectroscopic approach and molecular modeling. J. Agric. Food Chem. 2012;60:1135–1145. doi: 10.1021/jf204380r. PubMed DOI

Sułkowska A., Maciążek-Jurczyk M., Bojko B., Rownicka J., Zubik-Skupień I., Temba E., Pentak D., Sułkowski W.W. Competitive binding of phenylbutazone and colchicine to serum albumin in multidrug therapy: A spectroscopic study. J. Mol. Struct. 2008;881:97–106. doi: 10.1016/j.molstruc.2007.09.001. DOI

Anfinsen C.B. Principles that govern the folding of protein chains. Science. 1973;181:223–230. doi: 10.1126/science.181.4096.223. PubMed DOI

Sułkowska A. Interaction of drugs with bovine and human serum albumin. J. Mol. Struct. 2008;614:227–232. doi: 10.1016/S0022-2860(02)00256-9. DOI

Meloun B., Morávek L., Kostka V. Complete amino acid sequence of human serum albumin. FEBS Lett. 1975;58:134–137. doi: 10.1016/0014-5793(75)80242-0. PubMed DOI

Cui Y., Guo J., Xu B., Chen Z. Binding of chlorpyrifos and cypermethrin to blood proteins. Pestic. Biochem. Phys. 2006;85:110–114. doi: 10.1016/j.pestbp.2005.11.004. DOI

Huang Y., Zhang Z., Zhang D., Lv J. Flow-injection analysis chemiluminescence detection combined with microdialysis sampling for studying protein binding of drug. Talanta. 2001;53:835–841. doi: 10.1016/S0039-9140(00)00569-5. PubMed DOI

Fasano M., Curry S., Terreno E., Galliano M., Fanali G., Narciso P., Notari S., Ascenzi P. The extraordinary ligand binding properties of human serum albumin. IUBMB Life. 2005;57:787–796. doi: 10.1080/15216540500404093. PubMed DOI

Ascenzi P., Fasano M. Allostery in a monomeric protein: The case of human serum albumin. Biophys. Chem. 2010;148:16–22. doi: 10.1016/j.bpc.2010.03.001. PubMed DOI

Fanali G., Masi A., Trezza V., Marino M., Fasano M., Ascenzi P. Human serum albumin: From bench to bedside. Mol. Aspects Med. 2012;33:209–290. doi: 10.1016/j.mam.2011.12.002. PubMed DOI

Sudlow G.D.J.B., Birkett D.J., Wade D.N. The characterization of two specific drug binding sites on human serum albumin. Mol. Pharmacol. 1975;11:824–832. PubMed

Petitpas I., Bhattacharya A.A., Twine S., East M., Curry S. Crystal structure analysis of warfarin binding to human serum albumin anatomy of drug site I. J. Biol. Chem. 2001;276:22804–22809. doi: 10.1074/jbc.M100575200. PubMed DOI

Ghuman J., Zunszain P.A., Petitpas I., Bhattacharya A.A., Otagiri M., Curry S. Structural basis of the drug-binding specificity of human serum albumin. J. Mol. Biol. 2005;353:38–52. doi: 10.1016/j.jmb.2005.07.075. PubMed DOI

Zsila F., Bikari Z., Malik D., Hari P., Pechan I., Berces A., Hazai E. Evaluation of drug–human serum albumin binding interactions with support vector machine aided online automated docking. Bioinformatics. 2011;27:1806–1813. doi: 10.1093/bioinformatics/btr284. PubMed DOI

Patra S., Santhosh K., Pabbathi A., Samanta A. Diffision of organic dyes in bovine serum albumin solution studied by fluorescence correlation spectroscopy. RSC Adv. 2012;2:6079–6086. doi: 10.1039/c2ra20633a. DOI

Peters T.J. The albumin molecule: Its structure and chemical properties. In: Peters T.J., editor. All about Albumin: Biochemistry, Genetics and Medical Applications. Academic Press; San Diego, CA, USA: 1996. pp. 9–75.

Zhang C.X., Lippard S.J. New metal complexes as potential therapeutics. Curr. Opin. Chem. Biol. 2003;7:481–489. doi: 10.1016/S1367-5931(03)00081-4. PubMed DOI

Meggers E. Targeting proteins with metal complexes. Chem. Commun. 2009;9:1001–1010. doi: 10.1039/b813568a. PubMed DOI

Alyar H., Alyar S., Űnal A., Őzbek N., Sahin E., Karacan N. Synthesis, characterization and antimicrobial activity of mtoluenesulfonamide, N, N′-1, 2-ethanediylbis (mtsen) and [Cu (II)(phenanthroline) 2] mtsen complex. J. Mol. Struct. 2012;1028:116–125. doi: 10.1016/j.molstruc.2012.06.046. DOI

Krishnamoorthy P., Sathyadevi P., Cowley A.H., Butorac R.R., Dharmaraj N. Evaluation of DNA binding, DNA cleavage, protein binding and in vitro cytotoxic activities of bivalent transition metal hydrazone complexes. Eur. J. Med. Chem. 2011;46:3376–3387. doi: 10.1016/j.ejmech.2011.05.001. PubMed DOI

Samari F., Hemmateenejad B., Shamsipur M., Rashidi M., Samouei H. Affinity of two novel five-coordinated anticancer Pt (II) complexes to human and bovine serum albumins: A spectroscopic approach. Inorg. Chem. 2012;51:3454–3464. doi: 10.1021/ic202141g. PubMed DOI

Sathyadevi P., Krishnamoorthy P., Butorac R.R., Cowley A.H., Bhuvanesh N.S.P., Dharmarajn N. Effect of substitution and planarity of the ligand on DNA/BSA interaction, free radical scavenging and cytotoxicity of diamagnetic Ni (II) complexes: A systematic investigation. Dalton Trans. 2011;40:9690–9702. doi: 10.1039/c1dt10767d. PubMed DOI

Xue F., Xie C.Z., Zhang Y.W., Qiao Z., Qiao X., Xu J.Y., Yan S.P. Two new dicopper (II) complexes with oxamido-bridged ligand: Synthesis, crystal structures, DNA binding/cleavage and BSA binding activity. J. Inorg. Biochem. 2012;115:78–86. doi: 10.1016/j.jinorgbio.2012.05.018. PubMed DOI

Wang Y.Q., Tang B.P., Zhang H.M., Zhou Q.H., Zhang G.C. Studies on the interaction between imidacloprid and human serum albumin: Spectroscopic approach. J. Photochem. Photobiol. B. 2009;94:183–190. doi: 10.1016/j.jphotobiol.2008.11.013. PubMed DOI

Yan C.N., Mei P., Guan Z.J., Liu Y. Studies on thermodynamics features of the interaction between imidacloprid and bovine serum albumin. Chin. J. Chem. 2007;25:1085–1089. doi: 10.1002/cjoc.200790202. DOI

Zhang J., Zhuang S., Tong C., Liu W. Probing the molecular interaction of triazole fungicides with human serum albumin by multispectroscopic techniques and molecular modeling. J. Agric. Food Chem. 2013;61:7203–7211. doi: 10.1021/jf401095n. PubMed DOI

Lakowicz J.R. Quenching of fluorescence. In: Lakowicz J.R., editor. Principles of Fluorescence Spectroscopy. 3rd ed. Plenum Press; New York, NY, USA: 1983. pp. 199–227.

Lu Y., Dasog M., Leontowich A.F., Scott R.W., Paige M.F. Fluorescently labeled gold nanoparticles with minimal fluorescence quenching. J. Phys. Chem. C. 2010;114:17446–17454. doi: 10.1021/jp105516f. DOI

Eftink M.R., Ghiron C.A. Fluorescence quenching studies with proteins. Anal. Biochem. 1981;114:199–227. doi: 10.1016/0003-2697(81)90474-7. PubMed DOI

Bhattacharya A.A., Grüne T., Curry S. Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin. J. Mol. Biol. 2000;303:721–732. doi: 10.1006/jmbi.2000.4158. PubMed DOI

Ross P.D., Subramanian S. Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry. 1981;20:3096–3102. doi: 10.1021/bi00514a017. PubMed DOI

Némethy G., Scheraga H.A. The structure of water and hydrophobic bonding in proteins. iii. The thermodynamic properties of hydrophobic bonds in proteins1, 2. J. Phys. Chem. 1962;66:1773–1789.

Congdon R.W., Muth G.W., Splittgerber A.G. The binding interaction of Coomassie blue with proteins. Anal. Biochem. 1993;213:407–413. doi: 10.1006/abio.1993.1439. PubMed DOI

Kragh-Hansen U. Molecular aspects of ligand binding to serum albumin. Pharmacol. Rev. 1981;33:17. PubMed

Tao W.S., Li W., Jiang Y.M. Protein Molecular Basic. The People’s Education Press; Beijing, China: 1981. p. 256.

Cui F.L., Fan J., Li J.P., Hu Z.D. Interactions between 1-benzoyl-4-p-chlorophenyl thiosemicarbazide and serum albumin: Investigation by fluorescence spectroscopy. Bioorg. Med. Chem. 2004;12:151–157. doi: 10.1016/j.bmc.2003.10.018. PubMed DOI

Vekshin N.L. Division of tyrosine and tryptophan fluorescent components by synchronous scanning method. Биофизика. 1996;41:1179. PubMed

Xu T., Guo X., Zhang L., Pan F., Lv J., Zhang Y., Jin H. Multiple spectroscopic studies on the interaction between olaquindox, a feed additive, and bovine serum albumin. Food Chem. Toxicol. 2012;50:2540–2546. doi: 10.1016/j.fct.2012.04.007. PubMed DOI

Klajnert B., Bryszewska M. Fluorescence studies on PAMAM dendrimers interactions with bovine serum albumin. Bioelectrochemistry. 2002;55:33–35. doi: 10.1016/S1567-5394(01)00170-0. PubMed DOI

Pan X., Qin P., Liu R., Wang J. Characterizing the interaction between tartrazine and two serum albumins by a hybrid spectroscopic approach. J. Agric. Food Chem. 2011;59:6650–6656. doi: 10.1021/jf200907x. PubMed DOI

Sudlow G., Birkett D.J., Wade D.N. Spectroscopic techniques in the study of protein binding. A fluorescence technique for the evaluation of the albumin binding and displacement of warfarin and warfarin-alcohol. Clin. Exp. Pharmacol. Physiol. 1975;2:129–140. doi: 10.1111/j.1440-1681.1975.tb01826.x. PubMed DOI

Trevisan M.G., Poppi R.J. Determination of doxorubicin in human plasma by excitation–emission matrix fluorescence and multi-way analysis. Anal. Chim. Acta. 2003;493:69–81. doi: 10.1016/S0003-2670(03)00864-X. DOI

Kalaiarasi G., Rajkumar S.R.J., Dharani S., Malecko J.G., Prabhakaran R. An investigation on 3-acetyl-7-methoxy-coumarin Schi_ bases and their Ru (II) metallates with potent antiproliferative activity and enhanced LDH and NO release. RSC Adv. 2018;8:1539–1561. doi: 10.1039/C7RA12104K. PubMed DOI PMC

He Y., Wang Y., Tang L., Liu H., Chen W., Zheng Z., Zou G. Binding of puerarin to human serum albumin: A spectroscopic analysis and molecular docking. J. Fluoresc. 2008;18:433–442. doi: 10.1007/s10895-007-0283-0. PubMed DOI

Lu Z.X., Cui T., Shi Q.L. Applications of Circular Dichroism and Optical Rotatory Dispersion in Molecular Biology. Science Press; Beijing, China: 1987. pp. 79–82.

Kandagal P.B., Ashoka S., Seetharamappa J., Shaikh S.M.T., Jadegoud Y., Ijare O.B. Study of the interaction of an anticancer drug with human and bovine serum albumin: Spectroscopic approach. J. Pharm. Biomed. Anal. 2006;41:393–399. doi: 10.1016/j.jpba.2005.11.037. PubMed DOI

Greenfield N.J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 2006;1:2876. doi: 10.1038/nprot.2006.202. PubMed DOI PMC

Luis-Jeune C., Andrade-Navarro M.A., Perez-Iratxeta C. Prediction of protein secondary structure from circular dichroism using theoretically derived spectra. Proteins. 2012;80:374–381. doi: 10.1002/prot.23188. PubMed DOI

Bai J., Sun X., Ma X. Interaction of tebuconazole with bovine serum albumin: Determination of the binding mechanism and binding site by spectroscopic methods. J. Environ. Sci. Health B. 2020;55:1–8. doi: 10.1080/03601234.2020.1725358. PubMed DOI

Alsalme A., Khan R.A., Alkathiri A.M., Ali M.S., Tabassum S., Jaafar M., Al-Lohedan H.A. β-carboline silver compound binding studies with human serum albumin: A comprehensive multispectroscopic analysis and molecular modeling study. Bioinorg. Chem. Appl. 2018 doi: 10.1155/2018/9782419. PubMed DOI PMC

Lu Y., Feng Q., Cui F., Xing W., Zhang G., Yao X. Interaction of 3′-azido-3′-deamoni daunorubicin with human serum albumin: Investigation by fluorescence spectroscopy and molecular modeling methods. Bioorg. Med. Chem. Lett. 2010;20:6899–6904. doi: 10.1016/j.bmcl.2010.10.009. PubMed DOI

Siddiqi M., Nusrat S., Alam P., Malik S., Chaturvedi S.K., Ajmal M.R., Abdelhameed A.S. Investigating the site selective binding of busulfan to human serum albumin: Biophysical and molecular docking approaches. Int. J. Biol. Macromol. 2018;107:1414–1421. doi: 10.1016/j.ijbiomac.2017.10.006. PubMed DOI

Sugio S., Kashima A., Mochizuki S., Noda M., Kobayashi K. Crystal structure of human serum albumin at 2.5 Å resolution. Protein Eng. 1999;12:439–446. doi: 10.1093/protein/12.6.439. PubMed DOI

Lee P., Wu X. Modifications of human serum albumin and their binding effect. Curr. Pharm. Des. 2015;21:1862–1865. doi: 10.2174/1381612821666150302115025. PubMed DOI PMC

Trott O., Olson A.J. AutoDockVina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. PubMed PMC

Stierand K., Maaß P., Rarey M. Molecular Complexes at a Glance: Automated Generationa of two-dimensional Complex Diagrams. Bioinformatics. 2006;22:1710–1716. doi: 10.1093/bioinformatics/btl150. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...