The Effect of Refractory Wall Emissivity on the Energy Efficiency of a Gas-Fired Steam Cracking Pilot Unit

. 2021 Feb 12 ; 14 (4) : . [epub] 20210212

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33673312

Grantová podpora
723706 Horizon 2020 Framework Programme

The effect of high emissivity coatings on the radiative heat transfer in steam cracking furnaces is far from understood. To start, there is a lack of experimental data describing the emissive properties of the materials encountered in steam cracking furnaces. Therefore, spectral normal emissivity measurements are carried out, evaluating the emissive properties of refractory firebricks before and after applying a high emissivity coating at elevated temperatures. The emissive properties are enhanced significantly after applying a high emissivity coating. Pilot unit steam cracking experiments show a 5% reduction in fuel gas firing rate after applying a high emissivity coating on the refractory of the cracking cells. A parametric study, showing the effect of reactor coil and furnace wall emissive properties on the radiative heat transfer inside a tube-in-box geometry, confirms that a non-gray gas model is required to accurately model the behavior of high emissivity coatings. Even though a gray gas model suffices to capture the heat sink behavior of a reactor coil, a non-gray gas model that is able to account for the absorption and re-emission in specific bands is necessary to accurately model the benefits of applying a high emissivity coating on the furnace wall.

Zobrazit více v PubMed

Brodu E., Balat-Pichelin M., Meneses D.D.S., Sans J.-L. Reducing the temperature of a C/C composite heat shield for solar probe missions with an optically selective semi-transparent pyrolytic boron nitride (pBN) coating. Carbon. 2015;82:39–50. doi: 10.1016/j.carbon.2014.10.022. DOI

Gordon A.J., Walton K.L., Ghosh T.K., Loyalka S.K., Viswanath D.S., Tompson R.V. Hemispherical total emissivity of Hastelloy N with different surface conditions. J. Nucl. Mater. 2012;426:85–95. doi: 10.1016/j.jnucmat.2012.03.026. DOI

Yao Z., Xia Q., Ju P., Wang J., Su P., Li D., Jiang Z. Investigation of absorptance and emissivity of thermal control coatings on Mg-Li alloys and OES analysis during PEO process. Sci. Rep. 2016;6:29563. doi: 10.1038/srep29563. PubMed DOI PMC

Raman A.P., Anoma M.A., Zhu L., Rephaeli E., Fan S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature. 2014;515:540–544. doi: 10.1038/nature13883. PubMed DOI

Stefanidis G.D., Van Geem K.M., Heynderickx G.J., Marin G. Evaluation of high-emissivity coatings in steam cracking furnaces using a non-grey gas radiation model. Chem. Eng. J. 2008;137:411–421. doi: 10.1016/j.cej.2007.04.042. DOI

Kong B., Li T., Eri Q. Normal spectral emissivity of GH536 (HastelloyX) in three surface conditions. Appl. Therm. Eng. 2017;113:20–26. doi: 10.1016/j.applthermaleng.2016.11.022. DOI

Jones J., Mason P., Williams A. A compilation of data on the radiant emissivity of some materials at high temperatures. J. Energy Inst. 2019;92:523–534. doi: 10.1016/j.joei.2018.04.006. DOI

Stendera J., Bonsall S. High Emissivity Coatings-Do They Really Work? Refract. Worldforum. 2012;4:67–72.

He X., Li Y., Wang L., Sun Y., Zhang S. High emissivity coatings for high temperature application: Progress and prospect. Thin Solid Film. 2009;517:5120–5129. doi: 10.1016/j.tsf.2009.03.175. DOI

Emisshield Website-Hydrocarbon & Chemical Refractory and Metal Coatings. [(accessed on 14 January 2020)]; Available online: http://www.emisshield.com/industrial-applications/hydrocarbon-chemical/

Zhai Y., Ma Y., David S.N., Zhao D., Lou R., Tan G., Yang R., Yin X. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science. 2017;355:1062–1066. doi: 10.1126/science.aai7899. PubMed DOI

Goldstein E.A., Raman A.P., Fan S. Sub-ambient non-evaporative fluid cooling with the sky. Nat. Energy. 2017;2:17143. doi: 10.1038/nenergy.2017.143. DOI

Zhu L., Raman A.P., Fan S. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody. Proc. Natl. Acad. Sci. USA. 2015;112:12282–12287. doi: 10.1073/pnas.1509453112. PubMed DOI PMC

Hossain M., Gu M. Radiative Cooling: Principles, Progress and Potentials. Adv. Sci. 2016;3:1500360. doi: 10.1002/advs.201500360. PubMed DOI PMC

Evans T.G., Olver J.W., Dillard J.G., Simmons J.A., Churchward R.A. Thermal protective coating for ceramic surfaces. No. 6,921,431. U.S. Patent. 2005 Jul 26;

Simmons J.A., Evans T.G., Churchward R.A., Dillard J.G., Olver J.W. Thermal protective coating. No. 7,105,047. U.S. Patent. 2006 Sep 12;

Huang Z., Ruan X. Nanoparticle embedded double-layer coating for daytime radiative cooling. Int. J. Heat Mass Transf. 2017;104:890–896. doi: 10.1016/j.ijheatmasstransfer.2016.08.009. DOI

Zhang Y., Qian F., Schietekat C.M., Van Geem K.M., Guy A., Marin G.B. Impact of flue gas radiative properties and burner geometry in furnace simulations. AIChE J. 2014;61:936–954. doi: 10.1002/aic.14724. DOI

Viskanta R., Mengüç M. Radiation heat transfer in combustion systems. Prog. Energy Combust. Sci. 1987;13:97–160. doi: 10.1016/0360-1285(87)90008-6. DOI

Elliston D., Gray W., Hibberd D., Ho T.-Y., Williams A. The effect of surface emissivity on furnace performance. J. Inst. Energy. 1987;60:155–167.

Ward J., Tan C., Tucker R.J. Development of a Spectral Radiation Model to Predict the Transient Performance of a Metal Reheating Furnace. ASME Int. Mech. Eng. Congr. Expo. 2009;43765:427–432.

Tucker R., Ward J. Identifying and quantifying energy savings on fired plant using low cost modelling techniques. Appl. Energy. 2012;89:127–132. doi: 10.1016/j.apenergy.2011.01.061. DOI

Heynderickx G.J., Nozawa M. High-emissivity coatings on reactor tubes and furnace walls in steam cracking furnaces. Chem. Eng. Sci. 2004;59:5657–5662. doi: 10.1016/j.ces.2004.07.075. DOI

Heynderickx G.J., Nozawa M. Banded gas and nongray surface radiation models for high-emissivity coatings. AIChE J. 2005;51:2721–2736. doi: 10.1002/aic.10514. DOI

Stefanidis G.D., Merci B., Heynderickx G.J., Marin G.B. Gray/nongray gas radiation modeling in steam cracker CFD calculations. AIChE J. 2007;53:1658–1669. doi: 10.1002/aic.11186. DOI

Adams B., Olver J. Impact of high-emissivity coatings on process furnace heat transfer; Proceedings of the AIChE Spring Meeting and Global Congress on Process Safety, Austin; Texas, TX, USA. 28 April 2015.

Yi Z., Zhang W., Yang Q.-D., Li G.-J., Chen H.-G. Influence analysis of the furnace wall emissivity on heating process. Infrared Phys. Technol. 2018;93:326–334. doi: 10.1016/j.infrared.2018.08.009. DOI

Hellander J. How High Emissivity Ceramic Coatings Function Advantageously in Furnace Applications. In: Wachtman J.B. Jr., editor. Materials & Equipment/Whitewares: Ceramic Engineering and Science Proceedings. The American Ceramic Society, Inc.; Westerville, OH, USA: 1991.

Benko I. High infrared emissivity coating for energy conservation and protection of inner surfaces in furnaces. Int. J. Glob. Energy Issues. 2002;17:60. doi: 10.1504/IJGEI.2002.000931. DOI

Švantner M., Honnerová P., Veselý Z. The influence of furnace wall emissivity on steel charge heating. Infrared Phys. Technol. 2016;74:63–71. doi: 10.1016/j.infrared.2015.12.001. DOI

Isik O., Onbasioglu S.U. Design of a hybrid emissivity domestic electric oven. Heat Mass Transf. 2017;53:3189–3198. doi: 10.1007/s00231-017-2071-y. DOI

Manni A., Cordiner S., Manni A., Mulone V., Rocco V. Biomass fast pyrolysis in a shaftless screw reactor: A 1-D numerical model. Energy. 2018;157:792–805. doi: 10.1016/j.energy.2018.05.166. DOI

Hu G., Zhang Y., Du W., Long J., Qian F. Zone method based coupled simulation of industrial steam cracking furnaces. Energy. 2019;172:1098–1116. doi: 10.1016/j.energy.2018.12.190. DOI

Modest M.F. Radiative Heat Transfer. 3rd ed. Academic Press; Cambridge, MA, USA: 2013.

Howell J.R., Siegel R., Menguc M.P. Thermal Radiation Heat Transfer. National Aeronautics and Space Administration; Boca Raton, FL, USA: 1969.

Wen C.-D., Mudawar I. Modeling the effects of surface roughness on the emissivity of aluminum alloys. Int. J. Heat Mass Transf. 2006;49:4279–4289. doi: 10.1016/j.ijheatmasstransfer.2006.04.037. DOI

Yu K., Liu Y., Liu D., Liu Y. Normal spectral emissivity characteristics of roughened cobalt and improved emissivity model based on Agababov roughness function. Appl. Therm. Eng. 2019;159:113957. doi: 10.1016/j.applthermaleng.2019.113957. DOI

Honnerová P., Martan J., Kučera M., Honner M., Hameury J. New experimental device for high-temperature normal spectral emissivity measurements of coatings. Meas. Sci. Technol. 2014;25:095501. doi: 10.1088/0957-0233/25/9/095501. DOI

Del Campo L., Pérez-Sáez R.B., Esquisabel X., Fernández I., Tello M.J. New experimental device for infrared spectral directional emissivity measurements in a controlled environment. Rev. Sci. Instrum. 2006;77:113111. doi: 10.1063/1.2393157. DOI

Rozenbaum O., Meneses D.D.S., Auger Y., Chermanne S., Echegut P. A spectroscopic method to measure the spectral emissivity of semi-transparent materials up to high temperature. Rev. Sci. Instrum. 1999;70:4020–4025. doi: 10.1063/1.1150028. DOI

Le Baron E., Raccurt O., Giraud P., Adier M., Barriga J., Diaz B., Echegut P., Meneses D.D.S., Capiani C., Sciti D., et al. Round Robin Test for the comparison of spectral emittance measurement apparatuses. Sol. Energy Mater. Sol. Cells. 2019;191:476–485. doi: 10.1016/j.solmat.2018.11.026. DOI

Maynard R.K., Mokgalapa N.M., Ghosh T.K., Tompson R.V., Viswanath D.S., Loyalka S.K., Raymond K. Maynard University of Missouri Nuclear Science and Engineering Institute Columbia Missouri Hemispherical Total Emissivity of Potential Structural Materials for Very High Temperature Reactor Systems: Haynes 230. Nucl. Technol. 2012;179:429–438. doi: 10.13182/NT11-5. DOI

Honner M., Honnerová P. Survey of emissivity measurement by radiometric methods. Appl. Opt. 2015;54:669–683. doi: 10.1364/AO.54.000669. PubMed DOI

Honner M., Honnerová P., Kučera M., Martan J. Laser scanning heating method for high-temperature spectral emissivity analyses. Appl. Therm. Eng. 2016;94:76–81. doi: 10.1016/j.applthermaleng.2015.10.121. DOI

Veselý Z., Honnerová P., Martan J., Honner M. Sensitivity analysis of high temperature spectral emissivity measurement method. Infrared Phys. Technol. 2015;71:217–222. doi: 10.1016/j.infrared.2015.04.005. DOI

Dierickx J.L., Plehiers P.M., Froment G.F. On-line gas chromatographic analysis of hydrocarbon effluents: Calibration factors and their correlation. J. Chromatogr. A. 1986;362:155–174. doi: 10.1016/S0021-9673(01)86965-X. DOI

Van Geem K.M., Pyl S.P., Reyniers M.-F., Vercammen J., Beens J., Marin G.B. On-line analysis of complex hydrocarbon mixtures using comprehensive two-dimensional gas chromatography. J. Chromatogr. A. 2010;1217:6623–6633. doi: 10.1016/j.chroma.2010.04.006. PubMed DOI

Symoens S., Dokic M., Zhang J., Bellos G., Jakobi D., Weigandt J., Klein S., Battin-Leclerc F., Heynderickx G., Van Thielen J. In IMPROOF: Integrated model guided process optimization of steam cracking furnaces, 30th Ethylene producers’ conference; Proceedings of the AIChE Spring Meeting and Global Congress on Process Safety; Orlando, FL, USA. 24 April 2018.

Hottel H.C., Sarofim A.F. Radiative Transfer. McGraw-Hill; New York, NY, USA: 1967.

Green D.W., Perry R.H. Perry’s Chemical Engineers’ Handbook. 8th ed. McGraw-Hill Education; New York, NY, USA: 2007.

Honnerová P., Martan J., Martan J. Uncertainty determination in high-temperature spectral emissivity measurement method of coatings. Appl. Therm. Eng. 2017;124:261–270. doi: 10.1016/j.applthermaleng.2017.06.022. DOI

Jackson J., Yen C. Measurements of the total and spectral emissivities of some high temperature ceramic fibre insulation materials; Proceedings of the Ceramics in Energy Applications Conference; London, UK. 7 July 1994.

Habibi A., Merci B., Heynderickx G. Impact of radiation models in CFD simulations of steam cracking furnaces. Comput. Chem. Eng. 2007;31:1389–1406. doi: 10.1016/j.compchemeng.2006.11.009. DOI

Edwards D. Molecular Gas Band Radiation. Adv. Heat Transf. 1976;12:115–193.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace