The Effect of Refractory Wall Emissivity on the Energy Efficiency of a Gas-Fired Steam Cracking Pilot Unit
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
723706
Horizon 2020 Framework Programme
PubMed
33673312
PubMed Central
PMC7918708
DOI
10.3390/ma14040880
PII: ma14040880
Knihovny.cz E-zdroje
- Klíčová slova
- energy efficiency, high emissivity coating, radiative heat transfer, spectral normal emissivity,
- Publikační typ
- časopisecké články MeSH
The effect of high emissivity coatings on the radiative heat transfer in steam cracking furnaces is far from understood. To start, there is a lack of experimental data describing the emissive properties of the materials encountered in steam cracking furnaces. Therefore, spectral normal emissivity measurements are carried out, evaluating the emissive properties of refractory firebricks before and after applying a high emissivity coating at elevated temperatures. The emissive properties are enhanced significantly after applying a high emissivity coating. Pilot unit steam cracking experiments show a 5% reduction in fuel gas firing rate after applying a high emissivity coating on the refractory of the cracking cells. A parametric study, showing the effect of reactor coil and furnace wall emissive properties on the radiative heat transfer inside a tube-in-box geometry, confirms that a non-gray gas model is required to accurately model the behavior of high emissivity coatings. Even though a gray gas model suffices to capture the heat sink behavior of a reactor coil, a non-gray gas model that is able to account for the absorption and re-emission in specific bands is necessary to accurately model the benefits of applying a high emissivity coating on the furnace wall.
CRESS B 5 Deltahoek 34 4511 PA Breskens The Netherlands
Emisshield Inc 2000 Kraft Drive VA Blacksburg VA 24060 USA
Laboratory for Chemical Technology Ghent University Technologiepark 125 9052 Ghent Belgium
Zobrazit více v PubMed
Brodu E., Balat-Pichelin M., Meneses D.D.S., Sans J.-L. Reducing the temperature of a C/C composite heat shield for solar probe missions with an optically selective semi-transparent pyrolytic boron nitride (pBN) coating. Carbon. 2015;82:39–50. doi: 10.1016/j.carbon.2014.10.022. DOI
Gordon A.J., Walton K.L., Ghosh T.K., Loyalka S.K., Viswanath D.S., Tompson R.V. Hemispherical total emissivity of Hastelloy N with different surface conditions. J. Nucl. Mater. 2012;426:85–95. doi: 10.1016/j.jnucmat.2012.03.026. DOI
Yao Z., Xia Q., Ju P., Wang J., Su P., Li D., Jiang Z. Investigation of absorptance and emissivity of thermal control coatings on Mg-Li alloys and OES analysis during PEO process. Sci. Rep. 2016;6:29563. doi: 10.1038/srep29563. PubMed DOI PMC
Raman A.P., Anoma M.A., Zhu L., Rephaeli E., Fan S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature. 2014;515:540–544. doi: 10.1038/nature13883. PubMed DOI
Stefanidis G.D., Van Geem K.M., Heynderickx G.J., Marin G. Evaluation of high-emissivity coatings in steam cracking furnaces using a non-grey gas radiation model. Chem. Eng. J. 2008;137:411–421. doi: 10.1016/j.cej.2007.04.042. DOI
Kong B., Li T., Eri Q. Normal spectral emissivity of GH536 (HastelloyX) in three surface conditions. Appl. Therm. Eng. 2017;113:20–26. doi: 10.1016/j.applthermaleng.2016.11.022. DOI
Jones J., Mason P., Williams A. A compilation of data on the radiant emissivity of some materials at high temperatures. J. Energy Inst. 2019;92:523–534. doi: 10.1016/j.joei.2018.04.006. DOI
Stendera J., Bonsall S. High Emissivity Coatings-Do They Really Work? Refract. Worldforum. 2012;4:67–72.
He X., Li Y., Wang L., Sun Y., Zhang S. High emissivity coatings for high temperature application: Progress and prospect. Thin Solid Film. 2009;517:5120–5129. doi: 10.1016/j.tsf.2009.03.175. DOI
Emisshield Website-Hydrocarbon & Chemical Refractory and Metal Coatings. [(accessed on 14 January 2020)]; Available online: http://www.emisshield.com/industrial-applications/hydrocarbon-chemical/
Zhai Y., Ma Y., David S.N., Zhao D., Lou R., Tan G., Yang R., Yin X. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science. 2017;355:1062–1066. doi: 10.1126/science.aai7899. PubMed DOI
Goldstein E.A., Raman A.P., Fan S. Sub-ambient non-evaporative fluid cooling with the sky. Nat. Energy. 2017;2:17143. doi: 10.1038/nenergy.2017.143. DOI
Zhu L., Raman A.P., Fan S. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody. Proc. Natl. Acad. Sci. USA. 2015;112:12282–12287. doi: 10.1073/pnas.1509453112. PubMed DOI PMC
Hossain M., Gu M. Radiative Cooling: Principles, Progress and Potentials. Adv. Sci. 2016;3:1500360. doi: 10.1002/advs.201500360. PubMed DOI PMC
Evans T.G., Olver J.W., Dillard J.G., Simmons J.A., Churchward R.A. Thermal protective coating for ceramic surfaces. No. 6,921,431. U.S. Patent. 2005 Jul 26;
Simmons J.A., Evans T.G., Churchward R.A., Dillard J.G., Olver J.W. Thermal protective coating. No. 7,105,047. U.S. Patent. 2006 Sep 12;
Huang Z., Ruan X. Nanoparticle embedded double-layer coating for daytime radiative cooling. Int. J. Heat Mass Transf. 2017;104:890–896. doi: 10.1016/j.ijheatmasstransfer.2016.08.009. DOI
Zhang Y., Qian F., Schietekat C.M., Van Geem K.M., Guy A., Marin G.B. Impact of flue gas radiative properties and burner geometry in furnace simulations. AIChE J. 2014;61:936–954. doi: 10.1002/aic.14724. DOI
Viskanta R., Mengüç M. Radiation heat transfer in combustion systems. Prog. Energy Combust. Sci. 1987;13:97–160. doi: 10.1016/0360-1285(87)90008-6. DOI
Elliston D., Gray W., Hibberd D., Ho T.-Y., Williams A. The effect of surface emissivity on furnace performance. J. Inst. Energy. 1987;60:155–167.
Ward J., Tan C., Tucker R.J. Development of a Spectral Radiation Model to Predict the Transient Performance of a Metal Reheating Furnace. ASME Int. Mech. Eng. Congr. Expo. 2009;43765:427–432.
Tucker R., Ward J. Identifying and quantifying energy savings on fired plant using low cost modelling techniques. Appl. Energy. 2012;89:127–132. doi: 10.1016/j.apenergy.2011.01.061. DOI
Heynderickx G.J., Nozawa M. High-emissivity coatings on reactor tubes and furnace walls in steam cracking furnaces. Chem. Eng. Sci. 2004;59:5657–5662. doi: 10.1016/j.ces.2004.07.075. DOI
Heynderickx G.J., Nozawa M. Banded gas and nongray surface radiation models for high-emissivity coatings. AIChE J. 2005;51:2721–2736. doi: 10.1002/aic.10514. DOI
Stefanidis G.D., Merci B., Heynderickx G.J., Marin G.B. Gray/nongray gas radiation modeling in steam cracker CFD calculations. AIChE J. 2007;53:1658–1669. doi: 10.1002/aic.11186. DOI
Adams B., Olver J. Impact of high-emissivity coatings on process furnace heat transfer; Proceedings of the AIChE Spring Meeting and Global Congress on Process Safety, Austin; Texas, TX, USA. 28 April 2015.
Yi Z., Zhang W., Yang Q.-D., Li G.-J., Chen H.-G. Influence analysis of the furnace wall emissivity on heating process. Infrared Phys. Technol. 2018;93:326–334. doi: 10.1016/j.infrared.2018.08.009. DOI
Hellander J. How High Emissivity Ceramic Coatings Function Advantageously in Furnace Applications. In: Wachtman J.B. Jr., editor. Materials & Equipment/Whitewares: Ceramic Engineering and Science Proceedings. The American Ceramic Society, Inc.; Westerville, OH, USA: 1991.
Benko I. High infrared emissivity coating for energy conservation and protection of inner surfaces in furnaces. Int. J. Glob. Energy Issues. 2002;17:60. doi: 10.1504/IJGEI.2002.000931. DOI
Švantner M., Honnerová P., Veselý Z. The influence of furnace wall emissivity on steel charge heating. Infrared Phys. Technol. 2016;74:63–71. doi: 10.1016/j.infrared.2015.12.001. DOI
Isik O., Onbasioglu S.U. Design of a hybrid emissivity domestic electric oven. Heat Mass Transf. 2017;53:3189–3198. doi: 10.1007/s00231-017-2071-y. DOI
Manni A., Cordiner S., Manni A., Mulone V., Rocco V. Biomass fast pyrolysis in a shaftless screw reactor: A 1-D numerical model. Energy. 2018;157:792–805. doi: 10.1016/j.energy.2018.05.166. DOI
Hu G., Zhang Y., Du W., Long J., Qian F. Zone method based coupled simulation of industrial steam cracking furnaces. Energy. 2019;172:1098–1116. doi: 10.1016/j.energy.2018.12.190. DOI
Modest M.F. Radiative Heat Transfer. 3rd ed. Academic Press; Cambridge, MA, USA: 2013.
Howell J.R., Siegel R., Menguc M.P. Thermal Radiation Heat Transfer. National Aeronautics and Space Administration; Boca Raton, FL, USA: 1969.
Wen C.-D., Mudawar I. Modeling the effects of surface roughness on the emissivity of aluminum alloys. Int. J. Heat Mass Transf. 2006;49:4279–4289. doi: 10.1016/j.ijheatmasstransfer.2006.04.037. DOI
Yu K., Liu Y., Liu D., Liu Y. Normal spectral emissivity characteristics of roughened cobalt and improved emissivity model based on Agababov roughness function. Appl. Therm. Eng. 2019;159:113957. doi: 10.1016/j.applthermaleng.2019.113957. DOI
Honnerová P., Martan J., Kučera M., Honner M., Hameury J. New experimental device for high-temperature normal spectral emissivity measurements of coatings. Meas. Sci. Technol. 2014;25:095501. doi: 10.1088/0957-0233/25/9/095501. DOI
Del Campo L., Pérez-Sáez R.B., Esquisabel X., Fernández I., Tello M.J. New experimental device for infrared spectral directional emissivity measurements in a controlled environment. Rev. Sci. Instrum. 2006;77:113111. doi: 10.1063/1.2393157. DOI
Rozenbaum O., Meneses D.D.S., Auger Y., Chermanne S., Echegut P. A spectroscopic method to measure the spectral emissivity of semi-transparent materials up to high temperature. Rev. Sci. Instrum. 1999;70:4020–4025. doi: 10.1063/1.1150028. DOI
Le Baron E., Raccurt O., Giraud P., Adier M., Barriga J., Diaz B., Echegut P., Meneses D.D.S., Capiani C., Sciti D., et al. Round Robin Test for the comparison of spectral emittance measurement apparatuses. Sol. Energy Mater. Sol. Cells. 2019;191:476–485. doi: 10.1016/j.solmat.2018.11.026. DOI
Maynard R.K., Mokgalapa N.M., Ghosh T.K., Tompson R.V., Viswanath D.S., Loyalka S.K., Raymond K. Maynard University of Missouri Nuclear Science and Engineering Institute Columbia Missouri Hemispherical Total Emissivity of Potential Structural Materials for Very High Temperature Reactor Systems: Haynes 230. Nucl. Technol. 2012;179:429–438. doi: 10.13182/NT11-5. DOI
Honner M., Honnerová P. Survey of emissivity measurement by radiometric methods. Appl. Opt. 2015;54:669–683. doi: 10.1364/AO.54.000669. PubMed DOI
Honner M., Honnerová P., Kučera M., Martan J. Laser scanning heating method for high-temperature spectral emissivity analyses. Appl. Therm. Eng. 2016;94:76–81. doi: 10.1016/j.applthermaleng.2015.10.121. DOI
Veselý Z., Honnerová P., Martan J., Honner M. Sensitivity analysis of high temperature spectral emissivity measurement method. Infrared Phys. Technol. 2015;71:217–222. doi: 10.1016/j.infrared.2015.04.005. DOI
Dierickx J.L., Plehiers P.M., Froment G.F. On-line gas chromatographic analysis of hydrocarbon effluents: Calibration factors and their correlation. J. Chromatogr. A. 1986;362:155–174. doi: 10.1016/S0021-9673(01)86965-X. DOI
Van Geem K.M., Pyl S.P., Reyniers M.-F., Vercammen J., Beens J., Marin G.B. On-line analysis of complex hydrocarbon mixtures using comprehensive two-dimensional gas chromatography. J. Chromatogr. A. 2010;1217:6623–6633. doi: 10.1016/j.chroma.2010.04.006. PubMed DOI
Symoens S., Dokic M., Zhang J., Bellos G., Jakobi D., Weigandt J., Klein S., Battin-Leclerc F., Heynderickx G., Van Thielen J. In IMPROOF: Integrated model guided process optimization of steam cracking furnaces, 30th Ethylene producers’ conference; Proceedings of the AIChE Spring Meeting and Global Congress on Process Safety; Orlando, FL, USA. 24 April 2018.
Hottel H.C., Sarofim A.F. Radiative Transfer. McGraw-Hill; New York, NY, USA: 1967.
Green D.W., Perry R.H. Perry’s Chemical Engineers’ Handbook. 8th ed. McGraw-Hill Education; New York, NY, USA: 2007.
Honnerová P., Martan J., Martan J. Uncertainty determination in high-temperature spectral emissivity measurement method of coatings. Appl. Therm. Eng. 2017;124:261–270. doi: 10.1016/j.applthermaleng.2017.06.022. DOI
Jackson J., Yen C. Measurements of the total and spectral emissivities of some high temperature ceramic fibre insulation materials; Proceedings of the Ceramics in Energy Applications Conference; London, UK. 7 July 1994.
Habibi A., Merci B., Heynderickx G. Impact of radiation models in CFD simulations of steam cracking furnaces. Comput. Chem. Eng. 2007;31:1389–1406. doi: 10.1016/j.compchemeng.2006.11.009. DOI
Edwards D. Molecular Gas Band Radiation. Adv. Heat Transf. 1976;12:115–193.