The real UVB photoprotective efficacy of vegetable oils: in vitro and in vivo studies

. 2021 Jan ; 20 (1) : 139-151. [epub] 20210119

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33721242

Grantová podpora
1671 Young Research Support Program/ Excellent Team of STU, Slovak Republic
APVV-16-0088 Agentúra na Podporu Výskumu a Vývoja
1/0012/19 Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR
CZ.02.1.01/0.0/0.0/16_019/0000860 ERDF/ESF project "International competitiveness of NIPH in research, development and education in alternative toxicological methods"
75010330 Ministerstvo zdravotnictví České republiky - Conceptual development of research organization (National Institute of Public Health - NIPH)
1846/2020 Young Research Program, grant STU VEFARO

Odkazy

PubMed 33721242
DOI 10.1007/s43630-020-00009-3
PII: 10.1007/s43630-020-00009-3
Knihovny.cz E-zdroje

Some vegetable oils are currently being promoted as a safe alternative to commercial sunscreens. The true UVB photoprotective efficacy of 14 virgin vegetable oils and the suitability of the dilution method for determining their SPF value were evaluated. Oils and standard sunscreens were investigated in vitro by the Mansur's method in Slovakia and in vivo by the ISO method in the Czech Republic. SPF values in vitro (0.1; 0.0; 0.4; 0.2 and 0.2) and in vivo (2.5; 1.2; 2.6; 2.6; and 2.8) of the five most promoted oils (from carrot seed, coconut, raspberry seed, rosehip seed, and wheat germ) were significantly lower than the values reported in the controversial studies. We have shown that the overestimated SPF values of these oils were determined by authors who did not strictly follow Mansur's original methodology. The other eight vegetable oils also provide no or negligible SPF values. Only the in vitro SPF value of 11.2 tamanu oil is worth mentioning, probably due to high proportion of calophyllolides. In vitro and in vivo SPF ratios from 1.14 to 0.94 obtained by two methods in two laboratories for six commercial sunscreen oils used as controls confirm the correctness of performing the Mansur's method in this study. However, this dilution method has proven to be fundamentally flawed in determining the SPF value of substances with such negligible photoprotection as most vegetable oils can provide. An SPF value of less than 1, which can be determined by this Mansur's method, is physiologically impossible and meaningless.

Zobrazit více v PubMed

Garmyn, M., Young, A. R., & Miller, S. A. (2018). Mechanisms of and variables affecting UVR photoadaptation in human skin. Photochemical and Photobiological Sciences, 17, 1932–1940. DOI

Baker, L. A., Marchetti, B., Karsili, T. N., et al. (2017). Photoprotection: extending lessons learned from studying natural sunscreens to the design of artificial sunscreen constituents. Chemical Society Reviews, 46, 3770–3791. DOI

Hojerová, J., Medovčíková, A., & Mikula, M. (2011). Photoprotective efficacy and photostability of fifteen sunscreen products having the same label SPF subjected to natural sunlight. International Journal of Pharmaceutics, 408(1–2), 27–38. DOI

Felton, S. J., Shih, B. B., Watson, R. E. B., et al. (2020). Photoprotection conferred by low level summer sunlight exposures against pro-inflammatory UVR insult. Photochemical and Photobiological Sciences, 19, 810–818. DOI

Klimová, Z., Hojerová, J., & Beránková, M. (2015). Skin absorption and human exposure estimation of three widely discussed UV filters in sunscreens: in vitro study mimicking real-life consumer habits. Food and Chemical Toxicology, 83, 237–250. DOI

Hojerová, J., Peráčková, Z., & Beránková, M. (2017). Margin of safety for two UV filters estimated by in vitro permeation studies mimicking consumer habits: effects of skin shaving and sunscreen reapplication. Food and Chemical Toxicology, 103, 66–78. DOI

Hiller, J., Klotz, K., Meyer, S., et al. (2019). Systemic availability of lipophilic organic UV filters through dermal sunscreen exposure. Environment International, 132, 105068. DOI

Stoeckelhuber, M., Scherer, M., Peschel, O., et al. (2020). Human metabolism and urinary excretion kinetics of the UV filter Uvinul A plus DOI

Bom, S., Jorge, J., Ribeiro, H. M., et al. (2019). A step forward on sustainability in the cosmetics industry: a review. Journal of Cleaner Production, 225, 270–290. DOI

Wood, E. (2018). Impacts of sunscreens on coral reefs. International Coral Reef Initiative briefing, Feb 2018. https://www.icriforum.org/sites/default/files/ICRI_Sunscreen_0.pdf . Accessed 10 Sept 2020.

Merten, J. W., Roberts, K. J., King, J. L., et al. (2020). Pinterest homemade sunscreens: a recipe for sunburn. Health Communication, 35(9), 1123–1128. DOI

Escentials of Australia. (2020). https://www.escentialsofaustralia.com/products/productid942 . Accessed 10 Sept 2020.

Natural Sourcing. (2020). Specialist in Cosmeceuticals Ingredients. https://www.praannaturals.com/product-literature/NS_info_redraspberryseedoil_organic.pdf . Accessed 10 Sept 2020.

Pacific Scents. (2020). Natural protection from the sun with vegetable oils. https://pacificscents.com.au/natural-protection-from-the-sun-with-vegetable-oils . Accessed 10 Sept 2020.

Natural Factors (USA/Canada). (2020). https://naturalfactors.com/en-us/articles/4-uses-for-coconut-oil . Accessed 10 Sept 2020.

Oomah, D., Ladet, S., Godfrey, D. V., et al. (2000). Characteristics of raspberry (Rubus idaeus L.) seed oil. Food Chemistry, 69, 187–193. DOI

Kaur, C. D., & Saraf, S. (2010). In vitro sun protection factor determination of herbal oils used in cosmetics. Pharmacognosy Research, 2, 22–25. DOI

Suryawanshi, J. A. S. (2016). In-vitro determination of sun protection factor and evaluation of herbal oils. International Journal of Pharmacology Research, 6(1), 37–43.

Ranjithkumar, J., Sameesh, A., & Ramakrishnan, H. (2016). Sunscreen efficacy of Punica granatum (Pomegranate) and Citrullus colocynthis (Indrayani) seed oils. International Journal of Advanced Research in Biological Sciences, 10(3), 198–206. DOI

de Souza, C. M. P., dos Santos, P. G. G., Santana, C., et al. (2014). Physicochemical characterization and in vitro evaluation of the photoprotective activity of the oil from Opuntia ficus-indica (L.) Mill seeds. African Journal of Pharmacy and Pharmacology, 48(8), 824–831. http://www.iosrjournals.org/iosr-jrme/papers/Vol-5%20Issue-1/Version-3/A05130105.pdf . Accessed 10 Sept 2020.

Kumar, K. A., & Viswanathan, K. (2013). Study of UV transmission through a few edible oils and chicken oil. Journal of Spectroscopy, 28, 1–5. https://www.hindawi.com/journals/jspec/2013/540417/ . Accessed 10 Sept 2020.

Gause, S., & Chauhan, A. (2016). UV-blocking potential of oils and juices. International Journal Cosmetic Science, 38(4), 354–363. DOI

Mansur, J. S., Breder, M. N. R., Mansur, M. C. A., et al. (1986). Determinação do fator de proteção solar por espectrofotometria (Determination of sun protection factor by spectrophotometric methods). Anais Brasileiros de Dermatologia, 61, 121–124.

Mansur, J. S., Breder, M. N. R., Mansur, M. C. A., et al. (1986). Correlação entre a determinação do fator de proteção solar em seres humanos e por espectrofotometria (Correlation of sun protecting factor in human beings and by spectrophotometry). Anais Brasileiros de Dermatologia., 61, 167–172.

FDA. (2019). US food and drug administration, CFR: code of federal regulations title 21 (1), Sec. 352.70 Standard sunscreen. Revised as of April 1, 2019. https://www.ecfr.gov/cgi-bin/text-idx?SID=e864e020bb35619e319dfcab7180a049&mc=true&node=se21.5.352_170&rgn=div8 . Accessed 10 Sept 2020.

ISO 24444:2019 (2019). Cosmetics: sun protection test methods: in vivo determination of the sun protection factor (SPF). ISO/TC 217 Cosmetics ICS: 71.100.70, 59. https://www.iso.org/standard/72250.html . Accessed 10 Sept 2020.

Pissavini, M., Marguerie, S., and Doucet, O. (2016). SPF tests reveal no ideal in vitro substrate exists. Cosmetic and Toiletries, 131, 20–30. https://www.cosmeticsandtoiletries.com/testing/spf/SPF-Tests-Reveal-No-Ideal-In-vitro-Substrate-Exists-375272221.html . Accessed 10 Sept 2020.

Bendová, H., Akrman, J., Krejčí, A., et al. (2007). In vitro approaches to evaluation of sun protection factor. Toxicology in Vitro, 2, 1268–1275. DOI

Pissavini, M., Tricaud, C., Wiener, G., et al. (2020). Validation of a new in vitro sun protection factor (SPF) method to include a wide range of sunscreen product emulsion types. International Journal of Cosmetic Science, 42, 421–428. DOI

Sayre, R. M., Agin, P. P., LeVee, G. J., et al. (1979). Comparison of in vivo and in vitro testing of sunscreening formulas. Photochemistry and Photobiology, 29(3), 559–566. DOI

Lowe, N. J., & Breeding, J. (1983). Sunscreen predictive assays: Alternative assays that measure the ability of different sunscreens to protect against epidermal and dermal effects of ultraviolet irradiation. Cosmetics and Toiletries, 98, 65–68.

Solar light. SPF testing multiport 6-channel light source. Model 601 v.2. https://solarlight.com/wp-content/uploads/2008/12/Simulators_601-v2-5.pdf . Accessed 10 Sept 2020.

Council for international organizations of medical sciences (CIOMS). (2016). International ethical guidelines for health-related research involving humans. https://cioms.ch/wp-content/uploads/2017/01/WEB-CIOMS-EthicalGuidelines.pdf . Accessed 10 Sept 2020.

WMA Declaration of Helsinki (2013). Ethical principles for medical research involving human subjects, 1964, amended 2013. https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects . Accessed 10 Sept 2020.

Yang, S. I., Liu, S., Brooks, G. J., et al. (2018). Reliable and simple spectrophotometric determination of sun protection factor: A case study using organic UV filter-based sunscreen products. Journal of Cosmetic Dermatology, 17, 518–522. DOI

Sudhahar, V., anf Balasubramanian, V. (2013). Sun production factor (SPF) determination of marketed sunscreen formulation by in-vitro method using UV-VIS spectrophotometer. Archives of Applied Science Research, 5(6), 119–122. http://scholarsresearchlibrary.com/archive.html >. Accessed 10 Sept 2020.

Dutra, E. A., Oliveira, D. A., Kedor-Hackmann, L. G., et al. (2004). Determination of sun protection factor (SPF) of sunscreens by ultraviolet spectrophotometry. (Revista Brasileira de Ciências Farmacêutica) Brazilian Journal of Pharmaceutical Sciences, 40(3), 381–385. https://doi.org/10.1590/S1516-93322004000300014 >. Accessed 10 Sept 2020.

Mesías, L. G. G., Qwisgaard, A. M. R., Untivero, G. P. C., et al. (2017). Comparison of the photoprotective effects of sunscreens using spectrophotometric measurements or the survivability of yeast cells exposed to UV radiation. Revista de la Sociedad Química del Perú, 83(3), 294–307. URL: < http://www.scielo.org.pe/pdf/rsqp/v83n3/a05v83n3.pdf >. Accessed 10 Sept 2020.

Montenegro, L., & Santagati, L. M. (2019). Use of vegetable oils to improve the sun protection factor of sunscreen formulations. Cosmetics, 6(25), 1–10.

Wagemaker, T. A. L., Carvalho, C. R. L., & Filho, O. G. (2011). Sun protection factor, content, and composition of lipid of green coffee beans. Industrial Crops and Products, 33, 469–473. DOI

Runger, T. M. (2003). Ultraviolet light. In: Bolognia, J. L., Jorizzo, J. L., and Rapini, R. P. (Eds.), Dermatology (vol. 2, 1st ed., Chapter 86, pp. 1353–1357). London: Mosby.

Alfeetouri, O. H., Mosa, F. A., & Jibreel, W. A. (2019). Determination of sun protection factor (SPF) of some botanical oils by ultraviolet spectrophotometry. The Libyan Conference on Chemistry and Its Applications LCCA, 1(1), 52–58.

Healthline, DIY sunscreen recipes. URL: < https://www.healthline.com/health/homemade-sunscreen#diy-recipes >. Accessed 10 Sept 2020.

Kanellis, V. G. (2020). Sharing recipes and creating potentially dangerous homemade sunscreens. Australasian Journal of Dermatology, 61(2), 161–161.

Lim, T. L. C. (2020). Sunscreen: “Do-It-Yourself” (DIY) does not mean enough protection. Our Dermatology Online, 11(3), 273–274. DOI

Anonym. (2014). Tamanu original unrefined oil. Pacifique Sud Ingredients, Aubagne, France, 10 pgs. URL: < http://www.eurotradingonline.it/wp-content/uploads/2017/07/Ti_TAMANU_OIL.pdf >. Accessed 10 Sept 2020.

Rejeki, S. S., and Wahyuningsih, S. (2015). Formulasi gel tabir surya minyak nyamplung (tamanu oil) dan uji nilai SPF secara in vitro. University Research Colloquium, Indonesia, 97–103. http://hdl.handle.net/11617/5168 >. Accessed 10 Sept 2020.

Lim, T.K. (2012). Calophyllum inophyllum. In: Edible Medicinal and Non-Medicinal Plants (pp. 7–20). Dordrecht: Springer Science and Business Media B.V. https://doi.org/10.1007/978-94-007-1764-0_2 .

Léguillier, T., Lecsö-Bornet, M., Lémus, C. H., et al. (2015). The wound healing and antibacterial activity of five ethnomedical Calophyllum inophyllum oils: an alternative therapeutic strategy to treat infected wounds. PLoS ONE, 10(9), e0138602. DOI

Ansel, L. J., Lupo, E., Mijouin, L., et al. (2016). Biological activity of Polynesian Calophyllum inophyllum oil extract on human skin cells. Planta Medica, 82(11–12), 961–966. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...