Carotenoids produced by the deep-sea bacterium Erythrobacter citreus LAMA 915: detection and proposal of their biosynthetic pathway
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
33723710
DOI
10.1007/s12223-021-00858-0
PII: 10.1007/s12223-021-00858-0
Knihovny.cz E-resources
- MeSH
- Biosynthetic Pathways * genetics MeSH
- Carotenoids * metabolism MeSH
- Sphingomonadaceae * metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Carotenoids * MeSH
Technologies based on synthetic biology to produce bacterial natural carotenoids depend on information regarding their biosynthesis. Although the biosynthetic pathway of common carotenoids is known, there are carotenoids whose pathways are not completely described. This work aimed to mine the genome of the deep-sea bacterium Erythrobacter citreus LAMA 915, an uncommon bacterium that forms yellow colonies under cultivation. This work further explores the potential application of the carotenoids found and low-cost substrates for bacterial growth. A combined approach of genome mining and untargeted metabolomics analysis was applied. The carotenoid erythroxanthin sulfate was detected in E. citreus LAMA 915 cell extract. A proposal for carotenoid biosynthesis by this bacterium is provided, involving the genes crtBIYZWG. These are responsible for the biosynthesis of carotenoids from the zeaxanthin pathway and their 2,2'-hydroxylated derivatives. E. citreus LAMA 915 extracts showed antioxidant and sun protection effects. Based on the high content of proteases and lipases, it was possible to rationally select substrates for bacterial growth, with residual oil from fish processing the best low-cost substrate selected. This work advances in the understanding of carotenoid biosynthesis and provides a genetic basis that can be further explored as a biotechnological route for carotenoid production.
See more in PubMed
Agogué H, Joux F, Obernosterer I, Lebaron P (2005) Resistance of marine bacterioneuston to solar radiation. Appl Environ Microbiol 71:5282–5289. https://doi.org/10.1128/AEM.71.9.5282-5289.2005
Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2 DOI
Ambati R, Phang S-M, Ravi S et al (2014) Astaxanthin: sources, extraction, stability, biological activities and its commercial applications-a review. Mar Drugs 12:128–152. https://doi.org/10.3390/md12010128 PubMed DOI PMC
Amorim RGO de, Deschamps FC, Pessatti ML (2016) Protein hydrolysate waste of whitemouth croaker (Micropogonias furnieri) as a way of adding value to fish and reducing the environmental liabilities of the fishing industry. Lat Am J Aquat Res 44
Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201. https://doi.org/10.1093/bioinformatics/bti770 PubMed DOI
Aziz RK, Bartels D, Best AA et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75. https://doi.org/10.1186/1471-2164-9-75 PubMed DOI PMC
Baltschun D, Beutner S, Briviba K et al (1997) Singlet oxygen quenching abilities of carotenoids. Liebigs Ann 1997:1887–1893. https://doi.org/10.1002/jlac.199719970913 DOI
Baumann P, Baumann L, Mandel M (1971) Taxonomy of marine bacteria: the genus Beneckea. J Bacteriol 107:268–294 DOI
Benson DA, Cavanaugh M, Clark K et al (2013) GenBank. Nucleic Acids Res 41:D36-42. https://doi.org/10.1093/nar/gks1195 PubMed DOI
Berman J, Zorrilla-López U, Farré G et al (2015) Nutritionally important carotenoids as consumer products. Phytochem Rev 14:727–743. https://doi.org/10.1007/s11101-014-9373-1 DOI
Bhosale P, Larson AJ, Bernstein PS (2004) Factorial analysis of tricarboxylic acid cycle intermediates for optimization of zeaxanthin production from Flavobacterium multivorum. J Appl Microbiol 96:623–629. https://doi.org/10.1111/j.1365-2672.2004.02197.x
Borić M, Danevčič T, Stopar D (2011) Prodigiosin from Vibrio sp. DSM 14379; a new UV-protective pigment. Microb Ecol 62:528. https://doi.org/10.1007/s00248-011-9857-0
Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT - Food Sci Technol 28:25–30. https://doi.org/10.1016/S0023-6438(95)80008-5 DOI
Briggs WR (2007) The LOV domain: a chromophore module servicing multiple photoreceptors. In: J Biomed Sci Springer, pp 499–504
Britton G (1985) General carotenoids methods. In: Colowick SP, Kaplan NP, Law JH, Rilling HC (eds) Methods in Enzymology: Steroids and Isoprenoids Part B. Academic Press, 111, pp 113–149
Britton G (1995) Structure and properties of carotenoids in relation to function. FASEB J 9:1551–1558. https://doi.org/10.1096/fasebj.9.15.8529834 PubMed DOI
Cabral A (2016) Bioprospecção in silico da capacidade adaptativa e do potencial biotecnológico da Erythrobacter citreus LAMA 915. Federal University of Santa Catarina
Cheng YT, Yang CF (2016) Using strain Rhodotorula mucilaginosa to produce carotenoids using food wastes. J Taiwan Inst Chem Eng 61:270–275. https://doi.org/10.1016/j.jtice.2015.12.027
Chuyen HB, Eun JB (2017) Marine carotenoids: bioactivities and potential benefits to human health. Crit Rev Food Sci Nutr 57:2600–2610. https://doi.org/10.1080/10408398.2015.1063477
da Silva MAC, Cavalett A, Spinner A et al (2013) Phylogenetic identification of marine bacteria isolated from deep-sea sediments of the eastern South Atlantic Ocean. Springerplus 2:1–10. https://doi.org/10.1186/2193-1801-2-127
da Silva MAC, de Lima AO, S, (2017) Diversity and prospection of South Atlantic Ocean Microorganisms. Diversity and Benefits of Microorganisms from the Tropics. Springer International Publishing, Cham, pp 105–136 DOI
Denner EBM, Vybiral D, Koblízek M et al (2002) Erythrobacter citreus sp. nov., a yellow-pigmented bacterium that lacks bacteriochlorophyll a, isolated from the western Mediterranean Sea. Int J Syst Evol Microbiol 52:1655–1661. https://doi.org/10.1099/00207713-52-5-1655 PubMed DOI
Deuschle VCKN, Norbert Deuschle RA, Bortoluzzi MR, Athayde ML (2015) Physical chemistry evaluation of stability, spreadability, in vitro antioxidant, and photo-protective capacities of topical formulations containing Calendula officinalis L. Leaf extract Brazilian J Pharm Sci 51:63–75. https://doi.org/10.1590/S1984-82502015000100007
Di Mascio P, Kaiser S, Sies H (1989) Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophys 274:532–538. https://doi.org/10.1016/0003-9861(89)90467-0 PubMed DOI
Dieser M, Greenwood M, Foreman CM (2010) Carotenoid pigmentation in Antarctic heterotrophic bacteria as a strategy to withstand environmental stresses. Arctic, Antarct Alp Res 42:396–405. https://doi.org/10.1657/1938-4246-42.4.396
Ehling-Schulz M, Bilger W, Scherer S (1997) UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. J Bacteriol 179:1940–1945. https://doi.org/10.1128/jb.179.6.1940-1945.1997
Esatbeyoglu T, Rimbach G (2017) Canthaxanthin: from molecule to function. Mol Nutr Food Res 61:1600469. https://doi.org/10.1002/mnfr.201600469 DOI
FAO (2018) The State of World Fisheries and Aquaculture 2018 - Meeting the sustainable development goals. Rome
Frank A, Groll M (2017) The methylerythritol phosphate pathway to isoprenoids. Chem Rev 117:5675–5703. https://doi.org/10.1021/acs.chemrev.6b00537 PubMed DOI
Galperin MY (2010) Diversity of structure and function of response regulator output domains. Curr Opin Microbiol 13:150–159. https://doi.org/10.1016/j.mib.2010.01.005
Gao R, Mack TR, Stock AM (2007) Bacterial response regulators: versatile regulatory strategies from common domains. Trends Biochem Sci 32:225–234. https://doi.org/10.1016/j.tibs.2007.03.002
Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723. https://doi.org/10.1002/elps.1150181505 PubMed DOI
Gustavsson M, Lee SY (2016) Prospects of microbial cell factories developed through systems metabolic engineering. Microb Biotechnol 9:610–617. https://doi.org/10.1111/1751-7915.12385 PubMed DOI PMC
Hirayama O, Nakamura K, Hamada S, Kobayasi Y (1994) Singlet oxygen quenching ability of naturally occurring carotenoids. Lipids 29:149–150. https://doi.org/10.1007/BF02537155 PubMed DOI
Horai H, Arita M, Kanaya S et al (2010) MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom 45:703–714. https://doi.org/10.1002/jms.1777 PubMed DOI
Horn SJ, Aspmo SI, Eijsink VGH (2005) Growth of Lactobacillus plantarum in media containing hydrolysates of fish viscera. J Appl Microbiol 99:1082–1089. https://doi.org/10.1111/j.1365-2672.2005.02702.x
Imhoff JF, Labes A, Wiese J (2011) Bio-mining the microbial treasures of the ocean: New natural products. Biotechnol Adv 29:468–482. https://doi.org/10.1016/j.biotechadv.2011.03.001
Iwai M, Maoka T, Ikeuchi M, Takaichi S (2008) 2,2′-β-Hydroxylase (CrtG) is involved in carotenogenesis of both nostoxanthin and 2-hydroxymyxol 2′-fucoside in Thermosynechococcus elongatus strain BP-1. Plant Cell Physiol 49:1678–1687. https://doi.org/10.1093/pcp/pcn142 PubMed DOI
Jayasinghe P, Hawboldt K (2012) A review of bio-oils from waste biomass: focus on fish processing waste. Renew Sustain Energy Rev 16:798–821. https://doi.org/10.1016/j.rser.2011.09.005
Jinek M, Chylinski K, Fonfara I, et al (2012) A programmable dual-rna–guided DNA endonuclease in adaptive bacterial immunity. Science (80-) 1225829. https://doi.org/10.1126/science.1225829
Jørgensen BB, Boetius A (2007) Feast and famine - microbial life in the deep-sea bed. Nat Rev Microbiol 5:770–781. https://doi.org/10.1038/nrmicro1745 PubMed DOI
Jørgensen K, Skibsted LH (1993) Carotenoid scavenging of radicals. Zeitschrift für Leb und Forsch 196:423–429. https://doi.org/10.1007/BF01190806 DOI
Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28:27–30. https://doi.org/10.1093/nar/28.1.27 PubMed DOI PMC
Kelley LA, Mezulis S, Yates CM et al (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858. https://doi.org/10.1038/nprot.2015.053
Khaled HB, Ktari N, Ghorbel-Bellaaj O et al (2014) Composition, functional properties and in vitro antioxidant activity of protein hydrolysates prepared from sardinelle (Sardinella aurita) muscle. J Food Sci Technol 51:622–633. https://doi.org/10.1007/s13197-011-0544-4 DOI
Khoo H-E, Prasad KN, Kong K-W et al (2011) Carotenoids and their isomers: color pigments in fruits and vegetables. Molecules 16:1710–1738. https://doi.org/10.3390/molecules16021710 PubMed DOI PMC
Kirti K, Amita S, Priti S et al (2014) Colorful world of microbes: carotenoids and their applications, colorful world of microbes: carotenoids and their applications. Adv Biol Adv Biol 2014:e837891. https://doi.org/10.1155/2014/837891,DOI:10.1155/2014/837891
Koblízek M, Béjà O, Bidigare RR et al (2003) Isolation and characterization of Erythrobacter sp. strains from the upper ocean. Arch Microbiol 180:327–338. https://doi.org/10.1007/s00203-003-0596-6 PubMed DOI
Leão PN, Engene N, Antunes A et al (2012) The chemical ecology of cyanobacteria. Nat Prod Rep 29:372. https://doi.org/10.1039/c2np00075j PubMed DOI PMC
Lee SD, Kim ISAurantiacibacter rhizosphaerae sp. nov., isolated from a rhizosphere mudflat of a halophyte and proposal to reclassify Erythrobacter suaedae Lee, et al (2020) 2019. and Erythrobacter flavus Yoon et al. 2003 as Aurantiacibacter suaedae comb. nov. and Qipengyuania flava comb. nov., respectively. Int J Syst Evol Microbiol 70:6257–6265. https://doi.org/10.1099/ijsem.0.004524 PubMed DOI
Lei X, Zhang H, Chen Y et al (2015) Erythrobacter luteus sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 65:2472–2478. https://doi.org/10.1099/ijs.0.000283 PubMed DOI
Liaaen-Jensen S, Lutnaes BF (2005) Charged carotenoid species. In: Atta-ur-Rahman (ed) Studies in Natural Products Chemistry. Elsevier, pp 515–557
Lu Y, Wang L, Xue Y et al (2009) Production of violet pigment by a newly isolated psychrotrophic bacterium from a glacier in Xinjiang, China. Biochem Eng J 43:135–141. https://doi.org/10.1016/j.bej.2008.09.009
Luque EM, Gutiérrez G, Navarro-Sampedro L et al (2012) A Relationship between carotenoid accumulation and the distribution of species of the Fungus Neurospora in Spain. PLoS ONE 7:e33658. https://doi.org/10.1371/journal.pone.0033658 PubMed DOI PMC
Ma T, Deng Z, Liu T (2015) Microbial production strategies and applications of lycopene and other terpenoids. World J Microbiol Biotechnol 32:1–9. https://doi.org/10.1007/s11274-015-1975-2 DOI
Marchler-Bauer A, Derbyshire MK, Gonzales NR et al (2015) CDD: NCBI’s conserved domain database. Nucleic Acids Res 43:D222–D226. https://doi.org/10.1093/nar/gku1221 PubMed DOI
Martone CB, Borla OP, Sánchez JJ (2005) Fishery by-product as a nutrient source for bacteria and archaea growth media. Bioresour Technol 96:383–387. https://doi.org/10.1016/j.biortech.2004.04.008
Misawa N (2011) Carotenoid β-ring hydroxylase and ketolase from marine bacteria-promiscuous enzymes for synthesizing functional xanthophylls. Mar Drugs 9:757–771. https://doi.org/10.3390/md9050757 PubMed DOI PMC
Misawa N, Satomi Y, Kondo K et al (1995) Structure and functional analysis of a marine bacterial carotenoid biosynthesis gene cluster and astaxanthin biosynthetic pathway proposed at the gene level. J Bacteriol 177:6575–6584. https://doi.org/10.1128/jb.177.22.6575-6584.1995
Nishida Y, Adachi K, Kasai H et al (2005) Elucidation of a carotenoid biosynthesis gene cluster encoding a novel enzyme, 2,2′-β-hydroxylase, from Brevundimonas sp. strain SD212 and combinatorial biosynthesis of new or rare xanthophylls. Appl Environ Microbiol 71:4286–4296. https://doi.org/10.1128/AEM.71.8.4286-4296.2005
Nishino H, Murakoshi M, Tokuda H, Satomi Y (2009) Cancer prevention by carotenoids. Arch Biochem Biophys 483:165–168. https://doi.org/10.1016/j.abb.2008.09.011
Odisi EJ, Silvestrin MB, Takahashi RYU et al (2012) Bioprospection of cellulolytic and lipolytic South Atlantic deep-sea bacteria. Electron J Biotechnol 15. https://doi.org/10.2225/vol15-issue5-fulltext-17
Overbeek R, Begley T, Butler RM et al (2005) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 33:5691–5702. https://doi.org/10.1093/nar/gki866 PubMed DOI PMC
Qi H, Zhang Q, Zhao T et al (2005) Antioxidant activity of different sulfate content derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta) in vitro. Int J Biol Macromol 37:195–199. https://doi.org/10.1016/j.ijbiomac.2005.10.008
Raddadi N, Cherif A, Daffonchio D et al (2015) Biotechnological applications of extremophiles, extremozymes and extremolytes. Appl Microbiol Biotechnol 99:7907–7913. https://doi.org/10.1007/s00253-015-6874-9 PubMed DOI
Rafieian-Kopaei M, Bahmani M, Khodadadi S, et al (2016) Ameliorative effects of antioxidants on hypertension. Ann Res Antioxidants 1
Ron EYC, Plaza M, Kristjansdottir T et al (2018) Characterization of carotenoids in Rhodothermus marinus. Microbiologyopen 7:e00536. https://doi.org/10.1002/mbo3.536 DOI
Rowland MA, Deeds EJ (2014) Crosstalk and the evolution of specificity in two-component signaling. Proc Natl Acad Sci 111:5550–5555. https://doi.org/10.1073/pnas.1317178111 PubMed DOI
Ruivo M, Cartaxana P, Cardoso MI et al (2014) Extraction and quantification of pigments in aerobic anoxygenic phototrophic bacteria. Limnol Oceanogr Methods 12:338–350. https://doi.org/10.4319/lom.2014.12.338
Ruttkies C, Schymanski EL, Wolf S et al (2016) MetFrag relaunched: incorporating strategies beyond in silico fragmentation. J Cheminform 8:3. https://doi.org/10.1186/s13321-016-0115-9 PubMed DOI PMC
Sato-Takabe Y, Hamasaki K, Suzuki K (2012) Photosynthetic characteristics of marine aerobic anoxygenic phototrophic bacteria Roseobacter and Erythrobacter strains. Arch Microbiol 194:331–341. https://doi.org/10.1007/s00203-011-0761-2 PubMed DOI
Setiyono E, Pringgenies D, Shioi Y et al (2019) Sulfur-containing carotenoids from a marine coral symbiont Erythrobacter flavus strain KJ5. Mar Drugs 17:349. https://doi.org/10.3390/md17060349 DOI PMC
Shah MMR, Liang Y, Cheng JJ, Daroch M (2016) Astaxanthin-producing green microalga Haematococcus pluvialis: from single cell to high value commercial products. Front Plant Sci 7:531. https://doi.org/10.3389/fpls.2016.00531
Shanklin J, Whittle E, Fox BG (1994) Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry 33:12787–12794. https://doi.org/10.1021/bi00209a009 PubMed DOI
Shiba T, Simidu U (1982) Erythrobacter longus gen. nov., sp. nov., an aerobic bacterium which contains bacteriochlorophyll a. Int J Syst Bacteriol 32:211–217. https://doi.org/10.1099/00207713-32-2-211 DOI
Shiba T, Simidu U, Taga N (1979) Distribution of aerobic bacteria which contain Bacteriochlorophyll a. Appl Environ Microbiol 38:43–45 DOI
Sievers F, Wilm A, Dineen D et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539. https://doi.org/10.1038/msb.2011.75
Skibsted LH (2012) Carotenoids in antioxidant networks. Colorants or radical scavengers. J Agric Food Chem 60:2409–2417 DOI
Smith CA, O’Maille G, Want EJ et al (2005) METLIN: a metabolite mass spectral database. Ther Drug Monit 27:747–751 DOI
Snellen ELM, Verbeek ALM, Van Den Hoogen GWP et al (2002) Neovascular age-related macular degeneration and its relationship to antioxidant intake. Acta Ophthalmol Scand 80:368–371. https://doi.org/10.1034/j.1600-0420.2002.800404.x
Souissi N, Bougatef A, Triki-Ellouz Y, Nasri M (2007) Biochemical and functional properties of Sardinella (Sardinella aurita) by-product hydrolysates. Food Technol Biotechnol 45:187–194
Sperling P, Ternes P, Zank T, Heinz E (2003) The evolution of desaturases. Prostaglandins, Leukot Essent Fat Acids 68:73–95. https://doi.org/10.1016/S0952-3278(02)00258-2 DOI
Stahl W, Sies H (2012) β-Carotene and other carotenoids in protection from sunlight. Am J Clin Nutr 96:1179S-1184S. https://doi.org/10.3945/ajcn.112.034819 PubMed DOI
Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215. https://doi.org/10.1146/annurev.biochem.69.1.183 PubMed DOI
Subhash Y, Tushar L, Sasikala C, Ramana CV (2013) Erythrobacter odishensis sp. nov. and Pontibacter odishensis sp. nov. isolated from dry soil of a solar saltern. Int J Syst Evol Microbiol 63:4524–4532. https://doi.org/10.1099/ijs.0.052183-0 PubMed DOI
Swartz TE, Tseng T-S, Frederickson MA, et al (2007) Blue-light-activated histidine kinases: two-component sensors in bacteria. Science (80- ) 317:1090–1093. https://doi.org/10.1126/science.1144306
Takahashi RYU, Castilho NAS, da Silva MAC et al (2017) Prospecting for marine bacteria for polyhydroxyalkanoate production on low-cost substrates. Bioengineering 4:60. https://doi.org/10.3390/bioengineering4030060 DOI PMC
Takaichi S (2000) Characterization of carotenes in a combination of a C18 HPLC column with isocratic elution and absorption spectra with a photodiode-array detector. Photosynth Res 65:93–99. https://doi.org/10.1023/A:1006445503030 PubMed DOI
Takaichi S, Furihata K, Ishidsu J, Shimada K (1991) Carotenoid sulphates from the aerobic photosynthetic bacterium, Erythrobacter longus. Phytochemistry 30:3411–3415. https://doi.org/10.1016/0031-9422(91)83219-B DOI
Takaichi S, Maoka T (2015) Identification and spectroscopic characterization of neurosporene. Biotechnol Lett 37:2027–2031. https://doi.org/10.1007/s10529-015-1884-3
Takaichi S, Shimada K, Ishidsu J (1988) Monocyclic cross-conjugated carotenal from an aerobic photosynthetic bacterium, Erythrobacter longus. Phytochemistry 27:3605–3609. https://doi.org/10.1016/0031-9422(88)80776-3 DOI
Takaichi S, Shimada K, Ishidsu J, ichi, (1990) Carotenoids from the aerobic photosynthetic bacterium, Erythrobacter longus: β-carotene and its hydroxyl derivatives. Arch Microbiol 153:118–122. https://doi.org/10.1007/BF00247807 DOI
Takano H, Asker D, Beppu T, Ueda K (2006) Genetic control for light-induced carotenoid production in non-phototrophic bacteria. J Ind Microbiol Biotechnol 33:88–93. https://doi.org/10.1007/s10295-005-0005-z PubMed DOI
Tanaka T, Shnimizu M, Moriwaki H (2012) Cancer chemoprevention by carotenoids. Molecules 17:3202–3242. https://doi.org/10.3390/molecules17033202 PubMed DOI PMC
Tao L, Rouvière PE, Cheng Q (2006) A carotenoid synthesis gene cluster from a non-marine Brevundimonas that synthesizes hydroxylated astaxanthin. Gene 379:101–108. https://doi.org/10.1016/j.gene.2006.04.017
Tian B, Sun Z, Shen S et al (2009) Effects of carotenoids from Deinococcus radiodurans on protein oxidation. Lett Appl Microbiol 49:689–694. https://doi.org/10.1111/j.1472-765X.2009.02727.x
Tong Y, Lighthart B (1997) Solar radiation is shown to select for pigmented bacteria in the ambient outdoor atmosphere. Photochem Photobiol 65:103–106. https://doi.org/10.1111/j.1751-1097.1997.tb01884.x
Tuli HS, Chaudhary P, Beniwal V, Sharma AK (2015) Microbial pigments as natural color sources: current trends and future perspectives. J Food Sci Technol 52:4669–4678. https://doi.org/10.1007/s13197-014-1601-6 PubMed DOI
Valduga E, Rausch Ribeiro AH, Cence K et al (2014) Carotenoids production from a newly isolated Sporidiobolus pararoseus strain using agroindustrial substrates. Biocatal Agric Biotechnol 3:207–213. https://doi.org/10.1016/j.bcab.2013.10.001
van der Horst MA, Key J, Hellingwerf KJ (2007) Photosensing in chemotrophic, non-phototrophic bacteria: let there be light sensing too. Trends Microbiol 15:554–562. https://doi.org/10.1016/j.tim.2007.09.009
Venil CK, Zakaria ZA, Ahmad WA (2013) Bacterial pigments and their applications. Process Biochem 48:1065–1079. https://doi.org/10.1016/j.procbio.2013.06.006
Voutilainen S, Nurmi T, Mursu J, Rissanen TH (2006) Carotenoids and cardiovascular health. Am J Clin Nutr 83:1265–1271. https://doi.org/10.1093/ajcn/83.6.1265 PubMed DOI
Wang J, Guleria S, Koffas MA, Yan Y (2016) Microbial production of value-added nutraceuticals. Curr Opin Biotechnol 37:97–104. https://doi.org/10.1016/J.COPBIO.2015.11.003
Watanabe K, Yasugi E, Oshima M (2000) How to search the Glycolipid data in “LIPIDBANK for Web”, the newly developed lipid database in Japan. Trends Glycosci Glycotechnol 12:175–184. https://doi.org/10.4052/tigg.12.175 DOI
Weber T, Blin K, Duddela S et al (2015) antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 43:W237–W243. https://doi.org/10.1093/nar/gkv437 PubMed DOI PMC
Weinshilboum R, Otterness D (1994) Sulfotransferase enzymes. In: Kauffman FC (eds) Conjugation-deconjugation reactions in drug metabolism and toxicity. Handbook of Experimental Pharmacology, Springer, 112. pp 45–78. https://doi.org/10.1007/978-3-642-78429-3_2
Woodall AA, Lee SW-M, Weesie RJ et al (1997) Oxidation of carotenoids by free radicals: relationship between structure and reactivity. Biochim Biophys Acta - Gen Subj 1336:33–42. https://doi.org/10.1016/S0304-4165(97)00006-8 DOI
Yoon J-H, Kang KH, Yeo S-H, Oh T-K (2005) Erythrobacter luteolus sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 55:1167–1170. https://doi.org/10.1099/ijs.0.63522-0 PubMed DOI
Yoon J-H, Kim H, Kim I-G et al (2003) Erythrobacter flavus sp. nov., a slight halophile from the East Sea in Korea. Int J Syst Evol Microbiol 53:1169–1174. https://doi.org/10.1099/ijs.0.02510-0 PubMed DOI
Young AJ, Lowe GM (2001) Antioxidant and prooxidant properties of carotenoids. Arch Biochem Biophys 385:20–27. https://doi.org/10.1006/abbi.2000.2149
Yurkov V, Csotonyi JT (2009) New Light on Aerobic Anoxygenic Phototrophs. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) The Purple Phototrophic Bacteria. Springer, Netherlands, pp 31–55 DOI
Yurkov V, Gad’on N, Angerhofer A, Drews G, (2014) Light-harvesting complexes of Aerobic Bacteriochlorophyll-containing bacteria Roseococcus thiosulfatophilus, RB3 and Erythromicrobium ramosum, E5 and the transfer of excitation energy from carotenoids to Bacteriochlorophyll. Zeitschrift für Naturforsch C 49:579–586. https://doi.org/10.1515/znc-1994-9-1007
Yurkov V, Hughes E (2013) Genes associated with the peculiar phenotypes of the aerobic anoxygenic phototrophs. In: Advances in Botanical Research. Academic Press Inc., pp 327–358
Yurkov V, Beatty JT (1998) Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 62:695–724 DOI
Yurkov V et al (1994) Phylogenetic positions of novel aerobic, Bacteriochlorophyll a- containing bacteria and description of Roseococcus thiosulfatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov. Int J Syst Evol Microbiol 44:427–434. https://doi.org/10.1099/00207713-44-3-427 DOI
Zaccone R, Caruso G, Calı` CC (2002) Heterotrophic bacteria in the northern Adriatic Sea: seasonal changes and ectoenzyme profile
Zhang L, Wang Y, Liang J et al (2016) Degradation properties of various macromolecules of cultivable psychrophilic bacteria from the deep-sea water of the South Pacific Gyre. Extremophiles 20:663–671. https://doi.org/10.1007/s00792-016-0856-4 PubMed DOI
Zheng Q, Zhang R, Koblížek M et al (2011) Diverse arrangement of photosynthetic gene clusters in aerobic anoxygenic phototrophic bacteria. PLoS One 6:e25050. https://doi.org/10.1371/journal.pone.0025050 PubMed DOI PMC
Zhu G, Koszelak-Rosenblum M, Connelly SM et al (2015) The crystal structure of an integral membrane fatty acid α-hydroxylase. J Biol Chem 290:29820–29833. https://doi.org/10.1074/jbc.M115.680124 PubMed DOI PMC
Zhu L, Wu X, Li O et al (2012) Cloning and characterization of genes involved in nostoxanthin biosynthesis of Sphingomonas elodea ATCC 31461. PLoS ONE 7:e35099. https://doi.org/10.1371/journal.pone.0035099 PubMed DOI PMC
Zhuang L, Liu Y, Wang L et al (2015) Erythrobacter atlanticus sp. nov., a bacterium from ocean sediment able to degrade polycyclic aromatic hydrocarbons. Int J Syst Evol Microbiol 65:3714–3719. https://doi.org/10.1099/ijsem.0.000481 PubMed DOI
Zobell CE (1941) Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J Mar Res 4:41–75