• This record comes from PubMed

Tunable Stochasticity in an Artificial Spin Network

. 2021 Apr ; 33 (17) : e2008135. [epub] 20210318

Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic

Document type Journal Article

Grant support
ANR-17-CE24-0007-03 Agence Nationale de la Recherche
ANR-15IDEX-04-LUE Region Grand Est through its FRCR call
2014-2020 Region Grand Est through its FRCR call
European Union Program
DE-SC0019273 DOE BES

Metamaterials present the possibility of artificially generating advanced functionalities through engineering of their internal structure. Artificial spin networks, in which a large number of nanoscale magnetic elements are coupled together, are promising metamaterial candidates that enable the control of collective magnetic behavior through tuning of the local interaction between elements. In this work, the motion of magnetic domain-walls in an artificial spin network leads to a tunable stochastic response of the metamaterial, which can be tailored through an external magnetic field and local lattice modifications. This type of tunable stochastic network produces a controllable random response exploiting intrinsic stochasticity within magnetic domain-wall motion at the nanoscale. An iconic demonstration used to illustrate the control of randomness is the Galton board. In this system, multiple balls fall into an array of pegs to generate a bell-shaped curve that can be modified via the array spacing or the tilt of the board. A nanoscale recreation of this experiment using an artificial spin network is employed to demonstrate tunable stochasticity. This type of tunable stochastic network opens new paths toward post-Von Neumann computing architectures such as Bayesian sensing or random neural networks, in which stochasticity is harnessed to efficiently perform complex computational tasks.

See more in PubMed

C. E. Leiserson, N. C. Thompson, J. S. Emer, B. C. Kuszmaul, B. W. Lampson, D. Sanchez, T. B. Schardl, Science 2020, 368, eaam9744.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, D. S. Modha, Science 2014, 345, 668.

M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, G. C. Adam, K. K. Likharev, D. B. Strukov, Nature 2015, 521, 61.

J. Torrejon, M. Riou, F. A. Araujo, S. Tsunegi, G. Khalsa, D. Querlioz, P. Bortolotti, V. Cros, K. Yakushiji, A. Fukushima, H. Kubota, S. Yuasa, M. D. Stiles, J. Grollier, Nature 2017, 547, 428.

S. Ambrogio, P. Narayanan, H. Tsai, R. M. Shelby, I. Boybat, C. Di Nolfo, S. Sidler, M. Giordano, M. Bodini, N. C. P. Farinha, B. Killeen, C. Cheng, Y. Jaoudi, G. W. Burr, Nature 2018, 558, 60.

J. Grollier, D. Querlioz, K. Y. Camsari, K. Everschor-Sitte, S. Fukami, M. D. Stiles, Nat. Electron. 2020, 3, 360.

S. A. Siddiqui, S. Dutta, A. Tang, L. Liu, C. A. Ross, M. A. Baldo, Nano Lett. 2020, 20, 1033.

S. H. Skjaervø, C. H. Marrows, R. L. Stamps, L. J. Heyderman, Nat. Rev. Phys. 2020, 2, 13.

G. Hrkac, J. Dean, D. A. Allwood, Philos. Trans. R. Soc., A 2011, 369, 3214.

D. A. Allwood, G. Xiong, C. C. C. Faulkner, D. Atkinson, D. Petit, R. P. Cowburn, Science 2005, 309, 1688.

S. Parkin, S.-H. Yang, Nat. Nanotechnol. 2015, 10, 195.

J. H. Franken, H. J. M. M. Swagten, B. Koopmans, Nat. Nanotechnol. 2012, 7, 499.

Z. Luo, A. Hrabec, T. P. Dao, G. Sala, S. Finizio, J. Feng, S. Mayr, J. Raabe, P. Gambardella, L. J. Heyderman, Nature 2020, 579, 214.

M. Muñoz, J. L. Prieto, Nat. Commun. 2011, 2, 562.

T. J. Broomhall, A. W. Rushforth, M. C. Rosamond, E. H. Linfield, T. J. Hayward, Phys. Rev. Appl. 2020, 13, 024039.

A. Mizrahi, T. Hirtzlin, A. Fukushima, H. Kubota, S. Yuasa, J. Grollier, D. Querlioz, Nat. Commun. 2018, 9, 1533.

A. Alaghi, W. Qian, J. P. Hayes, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2018, 37, 1515.

K. Y. Camsari, P. Debashis, V. Ostwal, A. Z. Pervaiz, T. Shen, Z. Chen, S. Datta, J. Appenzeller, IEEE 2020, 108, 1322.

N. Chernov, D. Dolgopyat, J. Am. Math. Soc. 2008, 22, 821.

L. Bassham, A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, N. Heckert, J. Dray, Nist Spec. Publ. 2010, 22, 23.

A. Pushp, T. Phung, C. Rettner, B. P. Hughes, S.-H. Yang, L. Thomas, S. S. P. Parkin, Nat. Phys. 2013, 9, 505.

K. Zeissler, S. K. Walton, S. Ladak, D. E. Read, T. Tyliszczak, L. F. Cohen, W. R. Branford, Sci. Rep. 2013, 3, 1252.

S. K. Walton, K. Zeissler, D. M. Burn, S. Ladak, D. E. Read, T. Tyliszczak, L. F. Cohen, W. R. Branford, New J. Phys. 2015, 17, 013054.

O. A. Tretiakov, D. Clarke, G. W. Chern, Y. B. Bazaliy, O. Tchernyshyov, Phys. Rev. Lett. 2008, 100, 127204.

Python code repository, https://github.com/stevenang/randomness_testsuite (accessed: August 2020).

A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, B. Van Waeyenberge, AIP Adv. 2014, 4, 107133.

M. Hayashi, L. Thomas, C. Rettner, R. Moriya, S. S. P. P. Parkin, Nat. Phys. 2007, 3, 21.

G. S. D. D. Beach, C. Nistor, C. Knutson, M. Tsoi, J. L. Erskine, Nat. Mater. 2005, 4, 741.

A. Bisig, M. Stärk, M. A. Mawass, C. Moutafis, J. Rhensius, J. Heidler, F. Büttner, M. Noske, M. Weigand, S. Eisebitt, T. Tyliszczak, B. Van Waeyenberge, H. Stoll, G. Schütz, M. Kläui, Nat. Commun. 2013, 4, 2328.

H. Tanigawa, T. Koyama, M. Bartkowiak, S. Kasai, K. Kobayashi, T. Ono, Y. Nakatani, Phys. Rev. Lett. 2008, 101, 207203.

T. J. Hayward, Sci. Rep. 2015, 5, 13279.

M. Y. Im, L. Bocklage, P. Fischer, G. Meier, Phys. Rev. Lett. 2009, 102, 147204.

J. Briones, F. Montaigne, M. Hehn, D. Lacour, J. R. Childress, M. J. Carey, Phys. Rev. B: Condens. Matter Mater. Phys. 2011, 83, 060401.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...