Hidden diversity of the most basal tapeworms (Cestoda, Gyrocotylidea), the enigmatic parasites of holocephalans (Chimaeriformes)
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33750808
PubMed Central
PMC7970904
DOI
10.1038/s41598-021-84613-y
PII: 10.1038/s41598-021-84613-y
Knihovny.cz E-zdroje
- MeSH
- Cestoda * klasifikace genetika MeSH
- fylogeneze * MeSH
- RNA helmintů genetika MeSH
- RNA ribozomální 18S genetika MeSH
- ryby parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- RNA helmintů MeSH
- RNA ribozomální 18S MeSH
Gyrocotylideans are evolutionary ancient parasitic flatworms, and like their hosts-a relict group of holocephalan fishes (Chimaeriformes)-they are considered to be "living fossils" of a vanished past. However, the species diversity, host associations and biogeography of these most basal tapeworms are poorly known. Herein, we provide evidence of a conspicuous contrast between the genetic and morphological data based on an examination of newly collected and properly processed Gyrocotyle specimens (hologenophores) isolated from holocephalans off Taiwan and Argentina. Our molecular data, inferred from three genes (COI, 28S rRNA, 18S rRNA), showed unexpected genetic interrelationships among isolates of the genus Gyrocotyle, because each of the four genotypes from Taiwan clustered with isolates of distinct gyrocotylideans from the North Atlantic. Three genotypes of Gyrocotyle from Taiwan were morphologically almost indistinguishable from each other but represented distinct genetic lineages; a single specimen of Gyrocotyle sp. genotype 4 exhibited a clear genetic and morphological distinctness, though its formal description as a new species would be premature. Additionally, specimens of Gyrocotyle rugosa Diesing, 1850, from the type host Callorhinchus callorynchus from Argentina, provided the first genetic data on the type species of the genus and enabled us to characterise it, which is necessary for future taxonomic studies. The finding of some specimens of Gyrocotyle sp. genotype 3 in Chimaera phantasma, and another one in C. cf. argiloba, together with the putative conspecificity of an unidentified gyrocotylidean from Callorhinchus milii off Australia and G. rugosa from C. callorynchus off Argentina, represent evidence that one gyrocotylidean species may parasitise more than one holocephalan host species. Existing taxonomic problems and conflicts between morphological and molecular data on species of Gyrocotyle can only be resolved if hologenophores from type hosts and localities of nominal taxa are properly characterised genetically and morphologically.
Department of Biological Resources National Chiayi University Chiayi City Taiwan
Institute of Parasitology Slovak Academy of Sciences Košice Slovak Republic
Zobrazit více v PubMed
Waeschenbach A, Littlewood DTJ. A molecular framework for the Cestoda. In: Caira JN, Jensen K, editors. Planetary Biodiversity Inventory (2008–2017): Tapeworms from Vertebrate Bowels of the Earth. University of Kansas; 2017. pp. 431–451.
Gibson DI. Order Gyrocotylidea Poche, 1926. In: Khalil LF, Jones A, Bray RA, editors. Keys to the Cestode Parasites of Vertebrates. CAB International; 1994. pp. 21–43.
Kuchta R, Scholz T, Hansen H. Gyrocotylidea Poche, 1926. In: Caira JN, Jensen K, editors. Planetary Biodiversity Inventory (2008–2017): Tapeworms from Vertebrate Bowels of the Earth. University of Kansas; 2017. pp. 191–199.
Froese, R. & Pauly, D. Fishbase. World Wide Web Electronic Publication (2020) (accessed December 2020); www.fishbase.org.
Klimpel S, Busch MW, Kellermanns E, Kleinertz S, Palm HW. Metazoan Deep-Sea Fish Parasites. Verlag Natur & Wissenschaft; 2009. p. 383.
Bray RA, Waeschenbach A, Littlewood DTJ, Halvorsen O, Olson PD. Molecular circumscription of new species of Gyrocotyle Diesing, 1850 (Cestoda) from deep-sea chimaeriform holocephalans in the North Atlantic. Syst. Parasitol. 2020;97:285–296. doi: 10.1007/s11230-020-09912-w. PubMed DOI
Wagener, G. R. Ueber einen neuen in der Chimaera monstrosa gefunden Eingeweide-Wurm, Amphiptyches urna Grube and Wagener. Arch. Anat. Physiol. Wiss. Med. 543–554 (1852).
Fuhrmann O. Dritte Klasse der Cladus Plathelminthes. Cest-oidea. In: Kükenthal W, Krumbach T, editors. Handbuch der Zoologie. Walter de Gruyter and Co; 1931. pp. 141–416.
van der Land J, Dienske H. Two new species of Gyrocotyle (Monogenea) from chimaerids (Holocephali) Zool. Med. Uitgegeven door het Rijksmus. van Nat. Hist. Leiden. 1968;43:97–105.
van der Land J, Templeman T. Two new species of Gyrocotyle (Monogenea) from Hydrolagus affinis (Brito Capello) (Holocephali) J. Fish. Res. Board Can. 1968;25:2365–2385. doi: 10.1139/f68-206. DOI
Diesing KM. Systema Helminthum. W. Braumüller, Vindobonae; 1850.
MacDonagh EJ. Parásitos de peces comestibles. III—Dos cestodarios: Gyrocotyle rugosa del "Pez gallo" y Gyrocotyle máxima n. sp. del "Gatuso". La Semana Méd. Buenos Aires. 1927;34:1232–1235.
Haswell WA. On a Gyrocotyle from Chimaera ogilbyi and on Gyrocotyle in general. Proc. Linn. Soc. 1902;27:48–55.
Ichihara A. Gyrocotyle fimbriata Watson, 1911 from Chimaera fantasma in Suruga Bay. Jpn. J. Parasitol. 1976;25:13.
Watson EE. The genus Gyrocotyle and its significance for problems of cestode structure and phylogeny. Univ. Calif. Publ. Zool. 1911;6:353–468.
Bandoni SM, Brooks DR. Revision and phylogenetic analysis of the Gyrocotylidea Poche, 1926 (Platyhelminthes: Cercomeria: Cercomeromorpha) Can. J. Zool. 1987;65:2369–2389. doi: 10.1139/z87-358. DOI
Olson PD, Littlewood DTJ, Bray RA, Mariaux J. Interrelationships and evolution of the tapeworms (Platyhelminthes: Cestoda) Mol. Phylogenet. Evol. 2001;19:443–467. doi: 10.1006/mpev.2001.0930. PubMed DOI
Olson PD, Caira JN. Evolution of the major lineages of tapeworms (Platyhelminthes: Cestoidea) inferred from 18S ribosomal DNA and elongation factor-1 alpha. J. Parasitol. 1999;85:1134–1159. doi: 10.2307/3285679. PubMed DOI
Waeschenbach A, Webster BL, Littlewood DTJ. Adding resolution to ordinal level relationships of tapeworms (Platyhelminthes: Cestoda) with large fragments of mtDNA. Mol. Phylogenet. Evol. 2012;63:834–847. doi: 10.1016/j.ympev.2012.02.020. PubMed DOI
Lockyer AE, Olson PD, Littlewood DTJ. Utility of complete large and small subunit rRNA genes in resolving the phylogeny of the Neodermata (Platyhelminthes): Implications and a review of the cercomer theory. Biol. J. Linn. Soc. 2003;78:155–171. doi: 10.1046/j.1095-8312.2003.00141.x. DOI
Williams HH, Colin JA, Halvorsen O. Biology of gyrocotylideans with emphasis on reproduction, population ecology and phylogeny. Parasitology. 1987;95:173–207. doi: 10.1017/s0031182000057656. PubMed DOI
Bristow GA. On the distribution, ecology and evolution of Gyrocotyle urna, G. confusa and G. nybelini (Cercomeromorpha: Gyrocotylidea) and their host Chimaera monstrosa (Holocephalida: Chimaeridae) in Norwegian waters, with a review of the species question. Sarsia. 1992;77:119–124. doi: 10.1080/00364827.1992.10413497. DOI
Karlsbakk E, Aspholm PE, Berg V, Hareide NR, Berland B. Some parasites of the small-eyed rabbitfish, Hydrolagus affinis (Capello, 1867) (Holocephali), caught in deep waters off SW Greenland. Sarsia. 2002;87:179–184. doi: 10.1080/003648202320205256. DOI
Manter HW. Studies on Gyrocotyle rugosa Diesing 1850, a cestodarian parasite of the elephant fish, Callorhynchus milii. Zool. Publ. Victoria Univ. Wellington. 1951;1:1–11.
Pleijel F, et al. Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies. Mol. Phylogenet. Evol. 2008;48:369–371. doi: 10.1016/j.ympev.2008.03.024. PubMed DOI
Simmons JE. Gyrocotyle: A century-old enigma. In: Vernberg WB, editor. Symbiosis in the Sea. University of South Carolina Press; 1974. pp. 195–218.
Colin JA, Williams HH, Halvorsen O. One or three gyrocotylideans (Platyhelminthes) in Chimaera monstrosa (Holocephali)? J. Parasitol. 1986;72:10–21. doi: 10.2307/3281793. DOI
Lynch JE. Redescription of the species of Gyrocotyle from the Ratfish, Hydrolagus colliei (Lay and Bennet), with notes on the morphology and taxonomy of the genus. J. Parasitol. 1945;31:418–446. doi: 10.2307/3273042. PubMed DOI
Allison FR, Coakley A. The two species of Gyrocotyle in the elephant fish, Callorhynchus milii (Bory) J. R. Soc. N. Z. 1973;3:381–392. doi: 10.1080/03036758.1973.10421863. DOI
Wardle RA. The Cestoda of Canadian Fishes II. The Hudson Bay drainage system. Contrib. Can. Biol. Fish. (New Ser.) 1932;7:377–403. doi: 10.1139/f32-030. DOI
Didier DA. Phylogenetic systematics of extant chimaeroid fishes (Holocephali, Chimaeroidei) Am. Mus. Novit. 1995;3119:1–86.
Monticelli, F. Notes on some Entozoa in the collection of the British Museum. Proc. Zool. Soc. of Lond. 321–325 (1889).
Euzet L, Combes C. Les problèmes de l’espèce chez les animaux parasites. Mém. de la Soc. Zool. de France. 1980;40:239–285.
Fyler CA, Caira JN. Phylogenetic status of four new species of Acanthobothrium (Cestoda: Tetraphyllidea) parasitic on the wedgefish Rhynchobatus laevis (Elasmobranchii: Rhynchobatidae): Implications for interpreting host associations. Invertebr. Syst. 2010;24:419–433. doi: 10.1071/IS10034. DOI
Bueno VM, Caira JN. Redescription and molecular assessment of relationships among three species of Echeneibothrium (Rhinebothriidea: Echeneibothriidae) parasitizing the Yellownose skate, Dipturus chilensis, Chile. J. Parasitol. 2017;103:268–284. doi: 10.1645/16-177. PubMed DOI
Alves PV, de Chambrier A, Luque JL, Scholz T. Integrative taxonomy reveals hidden cestode diversity in Pimelodus catfishes in the Neotropics. Zool. Scr. 2020 doi: 10.1111/zsc.12465. DOI
Ebert DA, et al. An annotated checklist of the chondrichthyans of Taiwan. Zootaxa. 2013;3752:279–386. doi: 10.11646/zootaxa.3752.1.17. PubMed DOI
Holmes BH, Steinke D, Ward RD. Identification of shark and ray fins using DNA barcoding. Fish Res. 2009;95:280–288. doi: 10.1016/j.fishres.2008.09.036. DOI
Oros M, Scholz T, Hanzelová V, Mackiewicz JS. Scolex morphology of monozoic cestodes (Caryophyllidea) from the Palaearctic region: A useful tool for species identification. Folia Parasit. 2010;57:37–46. doi: 10.14411/fp.2010.006. PubMed DOI
Olson PD, Cribb TH, Tkach VV, Bray RA, Littlewood DTJ. Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda) Int. J. Parasitol. 2003;33:733–755. doi: 10.1016/S0020-7519(03)00049-3. PubMed DOI
Werle E, Schneider C, Renner M, Völker M, Fiehn W. Convenient single-step, one tube purification of PCR products for direct sequencing. Nucl. Acids Res. 1994;22:4354–4355. doi: 10.1093/nar/22.20.4354. PubMed DOI PMC
Littlewood DTJ, Curini-Galletti M, Herniou EA. The interrelationships of Proseriata (Platyhelminthes: Seriata) flatworms tested with molecules and morphology. Mol. Phylogenet. Evol. 2000;16:449–466. doi: 10.1006/mpev.2000.0802. PubMed DOI
Kearse M, et al. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC
Minh BQ, et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020;37:1530–1534. doi: 10.1093/molbev/msaa015. PubMed DOI PMC
Naser-Khdour S, Minh BQ, Zhang W, Stone EA, Lanfear R. The prevalence and impact of model violations in phylogenetic analysis. Genome Biol. Evol. 2019;11:3341–3352. doi: 10.1093/gbe/evz193. PubMed DOI PMC
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018;35:518–522. doi: 10.1093/molbev/msx281. PubMed DOI PMC
Littlewood DTJ, Rohde K, Clough KA. The phylogenetic position of Udonella (Platyhelminthes) Int. J. Parasitol. 1998;28:1241–1250. doi: 10.1016/s0020-7519(98)00108-8. PubMed DOI
Olson PD, Poddubnaya LG, Littlewood DTJ, Scholz T. On the position of Archigetes and its bearing on the early evolution of the tapeworms. J. Parasitol. 2008;94:898–904. doi: 10.1645/Ge-1456.1. PubMed DOI