Variety of size and form of GRM2 bacterial microcompartment particles
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33763934
PubMed Central
PMC8040866
DOI
10.1002/pro.4069
Knihovny.cz E-zdroje
- Klíčová slova
- GRM2, Klebsiella pneumoniae, bacterial microcompartments, cryo-EM,
- MeSH
- bakteriální proteiny chemie metabolismus MeSH
- elektronová kryomikroskopie MeSH
- Klebsiella pneumoniae chemie metabolismus ultrastruktura MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
Bacterial microcompartments (BMCs) are bacterial organelles involved in enzymatic processes, such as carbon fixation, choline, ethanolamine and propanediol degradation, and others. Formed of a semi-permeable protein shell and an enzymatic core, they can enhance enzyme performance and protect the cell from harmful intermediates. With the ability to encapsulate non-native enzymes, BMCs show high potential for applied use. For this goal, a detailed look into shell form variability is significant to predict shell adaptability. Here we present four novel 3D cryo-EM maps of recombinant Klebsiella pneumoniae GRM2 BMC shell particles with the resolution in range of 9 to 22 Å and nine novel 2D classes corresponding to discrete BMC shell forms. These structures reveal icosahedral, elongated, oblate, multi-layered and polyhedral traits of BMCs, indicating considerable variation in size and form as well as adaptability during shell formation processes.
CEITEC Central European Institute of Technology Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Cheng S, Liu Y, Crowley CS, Yeates TO, Bobik TA. Bacterial microcompartments: Their properties and paradoxes. Bioessays. 2008;30:1084–1095. PubMed PMC
Kerfeld CA, Erbilgin O. Bacterial microcompartments and the modular construction of microbial metabolism. Trends Microbiol. 2015;23:22–34. PubMed
Lee MJ, Palmer DJ, Warren MJ. Biotechnological advances in bacterial microcompartment technology. Trends Biotechnol. 2019;37:325–336. PubMed
Kerfeld CA, Melnicki MR. Assembly, function and evolution of cyanobacterial carboxysomes. Curr Opin Plant Biol. 2016;31:66–75. PubMed
Kerfeld CA. Protein structures forming the shell of primitive bacterial organelles. Science. 2005;309:936–938. PubMed
Chowdhury C, Sinha S, Chun S, Yeates TO, Bobik TA. Diverse bacterial microcompartment organelles. Microbiol Mol Biol Rev. 2014;78:438–468. PubMed PMC
Axen SD, Erbilgin O, Kerfeld CA. A taxonomy of bacterial microcompartment loci constructed by a novel scoring method. PLoS Comput Biol. 2014;10:e1003898. PubMed PMC
Jorda J, Lopez D, Wheatley NM, Yeates TO. Using comparative genomics to uncover new kinds of protein‐based metabolic organelles in bacteria: Bacterial microcompartments. Protein Sci. 2013;22:179–195. PubMed PMC
Kerfeld CA, Aussignargues C, Zarzycki J, Cai F, Sutter M. Bacterial microcompartments. Nat Rev Microbiol. 2018;16:277–290. PubMed PMC
Yeates TO, Kerfeld CA, Heinhorst S, Cannon GC, Shively JM. Protein‐based organelles in bacteria: Carboxysomes and related microcompartments. Nat Rev Microbiol. 2008;6:681–691. PubMed
Turmo A, Gonzalez‐Esquer CR, Kerfeld CA. Carboxysomes: Metabolic modules for CO2 fixation. FEMS Microbiol Lett. 2017;364:fnx176. PubMed
Kofoid E, Rappleye C, Stojiljkovic I, Roth J. The 17‐gene ethanolamine (eut) operon of salmonella typhimurium encodes five homologues of carboxysome shell proteins. J Bacteriol. 1999;181:5317–5329. PubMed PMC
Held M, Quin MB, Schmidt‐Dannert C. Eut bacterial microcompartments: Insights into their function, structure, and bioengineering applications. J Mol Microbiol Biotechnol. 2013;23:308–320. PubMed
Craciun S, Balskus EP. Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. Proc Natl Acad Sci. 2012;109:21307–21312. PubMed PMC
Herring TI, Harris TN, Chowdhury C, Mohanty SK, Bobik TA. A bacterial microcompartment is used for choline fermentation by Escherichia coli 536. J Bacteriol. 2018;200:4–17. PubMed PMC
Heldt D, Frank S, Seyedarabi A, et al. Structure of a trimeric bacterial microcompartment shell protein, EtuB, associated with ethanol utilization in Clostridium kluyveri . Biochem J. 2009;423:199–207. PubMed
Petit E, LaTouf WG, Coppi MV, et al. Involvement of a bacterial microcompartment in the metabolism of fucose and rhamnose by clostridium phytofermentans. PLoS One. 2013;8:e54337. PubMed PMC
Erbilgin O, McDonald KL, Kerfeld CA. Characterization of a planctomycetal organelle: A novel bacterial microcompartment for the aerobic degradation of plant saccharides. Appl Environ Microbiol. 2014;80:2193–2205. PubMed PMC
Greening C, Lithgow T. Formation and function of bacterial organelles. Nat Rev Microbiol. 2020;18:677–689. PubMed
Krupovic M, Koonin EV. Cellular origin of the viral capsid‐like bacterial microcompartments. Biol Direct. 2017;12:25. PubMed PMC
AbdulRahman F. The distribution of polyhedral bacterial microcompartments suggests frequent horizontal transfer and operon reassembly. J Phylogenet Evol Biol. 2013;1:4.
Yeates TO, Crowley CS, Tanaka S. Bacterial microcompartment organelles: Protein shell structure and evolution. Annu Rev Biophys. 2010;39:185–205. PubMed PMC
Kerfeld CA, Heinhorst S, Cannon GC. Bacterial microcompartments. Annu Rev Microbiol. 2010;64:391–408. PubMed
Chowdhury C, Chun S, Pang A, et al. Selective molecular transport through the protein shell of a bacterial microcompartment organelle. Proc Natl Acad Sci U S A. 2015;112:2990–2995. PubMed PMC
Yeates TO, Jorda J, Bobik TA. The shells of BMC‐type microcompartment organelles in bacteria. J Mol Microbiol Biotechnol. 2013;23:290–299. PubMed PMC
Bobik TA, Lehman BP, Yeates TO. Bacterial microcompartments: Widespread prokaryotic organelles for isolation and optimization of metabolic pathways. Mol Microbiol. 2015;98:193–207. PubMed PMC
Sutter M, Faulkner M, Aussignargues C, et al. Visualization of bacterial microcompartment facet assembly using high‐speed atomic force microscopy. Nano Lett. 2016;16:1590–1595. PubMed PMC
Lassila JK, Bernstein SL, Kinney JN, Axen SD, Kerfeld CA. Assembly of robust bacterial microcompartment shells using building blocks from an organelle of unknown function. J Mol Biol. 2014;426:2217–2228. PubMed
Cai F, Sutter M, Cameron JC, Stanley DN, Kinney JN, Kerfeld CA. The structure of CcmP, a tandem bacterial microcompartment domain protein from the β‐carboxysome, forms a subcompartment within a microcompartment. J Biol Chem. 2013;288:16055–16063. PubMed PMC
Mallette E, Kimber MS. A complete structural inventory of the mycobacterial microcompartment shell proteins constrains models of global architecture and transport. J Biol Chem. 2017;292:1197–1210. PubMed PMC
Greber BJ, Sutter M, Kerfeld CA. The plasticity of molecular interactions governs bacterial microcompartment shell assembly. Structure. 2019;27:749–763. PubMed PMC
Takenoya M, Nikolakakis K, Sagermann M. Crystallographic insights into the pore structures and mechanisms of the EutL and EutM shell proteins of the ethanolamine‐utilizing microcompartment of Escherichia coli . J Bacteriol. 2010;192:6056–6063. PubMed PMC
Thompson MC, Cascio D, Leibly DJ, Yeates TO. An allosteric model for control of pore opening by substrate binding in the EutL microcompartment shell protein: Pore regulation by substrate binding. Protein Sci. 2015;24:956–975. PubMed PMC
Sagermann M, Ohtaki A, Nikolakakis K. Crystal structure of the EutL shell protein of the ethanolamine ammonia lyase microcompartment. Proc Natl Acad Sci U S A. 2009;106:8883–8887. PubMed PMC
Klein MG, Zwart P, Bagby SC, et al. Identification and structural analysis of a novel carboxysome shell protein with implications for metabolite transport. J Mol Biol. 2009;392:319–333. PubMed
Tanaka S, Kerfeld CA, Sawaya MR, et al. Atomic‐level models of the bacterial carboxysome shell. Science. 2008;319:1083–1086. PubMed
Wheatley NM, Gidaniyan SD, Liu Y, Cascio D, Yeates TO. Bacterial microcompartment shells of diverse functional types possess pentameric vertex proteins. Protein Sci. 2013;22:660–665. PubMed PMC
Sutter M, Wilson SC, Deutsch S, Kerfeld CA. Two new high‐resolution crystal structures of carboxysome pentamer proteins reveal high structural conservation of CcmL orthologs among distantly related cyanobacterial species. Photosynth Res. 2013;118:9–16. PubMed
Cai F, Menon BB, Cannon GC, Curry KJ, Shively JM, Heinhorst S. The pentameric vertex proteins are necessary for the icosahedral carboxysome shell to function as a CO2 leakage barrier. PLoS One. 2009;4:e7521. PubMed PMC
Fan C, Cheng S, Liu Y, et al. Short N‐terminal sequences package proteins into bacterial microcompartments. Proc Natl Acad Sci U S A. 2010;107:7509–7514. PubMed PMC
Kinney JN, Salmeen A, Cai F, Kerfeld CA. Elucidating essential role of conserved carboxysomal protein CcmN reveals common feature of bacterial microcompartment assembly. J Biol Chem. 2012;287:17729–17736. PubMed PMC
Aussignargues C, Paasch BC, Gonzalez‐Esquer R, Erbilgin O, Kerfeld CA. Bacterial microcompartment assembly: The key role of encapsulation peptides. Commun Integr Biol. 2015;8:e1039755. PubMed PMC
Cai F, Dou Z, Bernstein S, et al. Advances in understanding carboxysome assembly in prochlorococcus and synechococcus implicate CsoS2 as a critical component. Life. 2015;5:1141–1171. PubMed PMC
Cameron JC, Wilson SC, Bernstein SL, Kerfeld CA. Biogenesis of a bacterial organelle: The carboxysome assembly pathway. Cell. 2013;155:1131–1140. PubMed
Fan C, Cheng S, Sinha S, Bobik TA. Interactions between the termini of lumen enzymes and shell proteins mediate enzyme encapsulation into bacterial microcompartments. Proc Natl Acad Sci U S A. 2012;109:14995–15000. PubMed PMC
Iancu CV, Morris DM, Dou Z, Heinhorst S, Cannon GC, Jensen GJ. Organization, structure, and assembly of α‐carboxysomes determined by electron cryotomography of intact cells. J Mol Biol. 2010;396:105–117. PubMed PMC
Chen AH, Robinson‐Mosher A, Savage DF, Silver PA, Polka JK. The bacterial carbon‐fixing organelle is formed by shell envelopment of preassembled cargo. PLoS One. 2013;8:e76127. PubMed PMC
Zarzycki J, Erbilgin O, Kerfeld CA. Bioinformatic characterization of glycyl radical enzyme‐associated bacterial microcompartments. Appl Environ Microbiol. 2015;81:8315–8329. PubMed PMC
Craciun S, Marks JA, Balskus EP. Characterization of choline trimethylamine‐lyase expands the chemistry of glycyl radical enzymes. ACS Chem Biol. 2014;9:1408–1413. PubMed
Kalnins G, Kuka J, Grinberga S, et al. Structure and function of CutC choline lyase from human microbiota bacterium Klebsiella pneumoniae . J Biol Chem. 2015;290:21732–21740. PubMed PMC
Ferlez B, Sutter M, Kerfeld CA. Glycyl radical enzyme‐associated microcompartments: Redox‐replete bacterial organelles. MBio. 2019;10:7–18. PubMed PMC
Baumgart M, Huber I, Abdollahzadeh I, Gensch T, Frunzke J. Heterologous expression of the Halothiobacillus neapolitanus carboxysomal gene cluster in Corynebacterium glutamicum . J Biotechnol. 2017;258:126–135. PubMed
Parsons JB, Dinesh SD, Deery E, et al. Biochemical and structural insights into bacterial organelle form and biogenesis. J Biol Chem. 2008;283:14366–14375. PubMed
Bonacci W, Teng PK, Afonso B, et al. Modularity of a carbon‐fixing protein organelle. Proc Natl Acad Sci U S A. 2012;109:478–483. PubMed PMC
Kirst H, Kerfeld CA. Bacterial microcompartments: Catalysis‐enhancing metabolic modules for next generation metabolic and biomedical engineering. BMC Biol. 2019;17:79. PubMed PMC
Kalnins G, Cesle E‐E, Jansons J, Liepins J, Filimonenko A, Tars K. Encapsulation mechanisms and structural studies of GRM2 bacterial microcompartment particles. Nat Commun. 2020;11:13. PubMed PMC
Yang M, Simpson DM, Wenner N, et al. Decoding the stoichiometric composition and organisation of bacterial metabolosomes. Nat Commun. 2020;11:1976. PubMed PMC
Sutter M, Greber B, Aussignargues C, Kerfeld CA. Assembly principles and structure of a 6.5‐MDa bacterial microcompartment shell. Science. 2017;356:1293–1297. PubMed PMC
Hagen A, Sutter M, Sloan N, Kerfeld CA. Programmed loading and rapid purification of engineered bacterial microcompartment shells. Nat Commun. 2018;9:2881. PubMed PMC
Parsons JB, Frank S, Bhella D, et al. Synthesis of empty bacterial microcompartments, directed organelle protein incorporation, and evidence of filament‐associated organelle movement. Mol Cell. 2010;38:305–315. PubMed
Luque A, Reguera D. The structure of elongated viral capsids. Biophys J. 2010;98:2993–3003. PubMed PMC
Kennedy NW, Hershewe JM, Nichols TM, et al. Apparent size and morphology of bacterial microcompartments varies with technique. PLoS One. 2020;15:e0226395. PubMed PMC
Iancu CV, Ding HJ, Morris DM, et al. The structure of isolated synechococcus strain WH8102 carboxysomes as revealed by electron cryotomography. J Mol Biol. 2007;372:764–773. PubMed PMC
Havemann GD, Bobik TA. Protein content of polyhedral organelles involved in coenzyme B12‐dependent degradation of 1,2‐propanediol in Salmonella enterica serovar typhimurium LT2. J Bacteriol. 2003;185:5086–5095. PubMed PMC
Zheng SQ, Palovcak E, Armache J‐P, Verba KA, Cheng Y, Agard DA. MotionCor2: Anisotropic correction of beam‐induced motion for improved cryo‐electron microscopy. Nat Methods. 2017;14:331–332. PubMed PMC
Zhang K. Gctf: Real‐time CTF determination and correction. J Struct Biol. 2016;193:1–12. PubMed PMC
Zivanov J, Nakane T, Forsberg BO, et al. New tools for automated high‐resolution cryo‐EM structure determination in RELION‐3. Elife. 2018;7:e42166. PubMed PMC