Eukaryotic viruses in the fecal virome at the onset of type 1 diabetes: A study from four geographically distant African and Asian countries
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33786936
DOI
10.1111/pedi.13207
Knihovny.cz E-zdroje
- Klíčová slova
- Africa, Asia, type 1 diabetes, virome,
- MeSH
- diabetes mellitus 1. typu diagnóza virologie MeSH
- dítě MeSH
- feces virologie MeSH
- lidé MeSH
- mladiství MeSH
- střevní mikroflóra MeSH
- studie případů a kontrol MeSH
- virom MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Ázerbájdžán MeSH
- Jordánsko MeSH
- Nigérie MeSH
- Súdán MeSH
OBJECTIVES: Studies of the fecal virome in type 1 diabetes (T1D) have been limited to populations of Europe and the United States. We therefore sought to characterize the stool virome in children after onset of T1D and in matched control subjects from four geographically distant African and Asian countries. METHODS: Samples of stool were collected from 73 children and adolescents shortly after T1D onset (Azerbaijan 19, Jordan 20, Nigeria 14, Sudan 20) and 105 matched control subjects of similar age and locale. Metagenomic sequencing of the DNA and RNA virome was performed, and virus positivity was defined as more than 0.001% of reads of the sample. Selected viruses were also quantified using real-time PCR. Conditional logistic regression was used to model associations with eukaryotic virus positivity. RESULTS: Signals of 387 different viral species were detected; at least one eukaryotic virus was detected in 71% case and 65% control samples. Neither of observed eukaryotic virus species or genera differed in frequency between children with T1D and controls. There was a suggestive association of the total count of different viral genera per sample between cases (1.45 genera) and controls (1.10 genera, OR 1.24, 95%CI 0.98-1.57), and an unplanned subanalysis suggested marginally more frequent endogenous retrovirus signal in cases (in 28.8% vs. in 8.6% controls, OR = 4.55, 95%CI 1.72-12). CONCLUSIONS: No clear and consistent association with T1D was observed in the fecal viromes from four distant non-European populations. The finding of borderline associations of human endogenous retroviruses merits further exploration.
Department of Paediatrics and Child Health Faculty of Medicine University of Khartoum Khartoum Sudan
Department of Pediatrics School of Medicine University of Jordan Amman Jordan
Zobrazit více v PubMed
Hyoty H. Viruses in type 1 diabetes. Pediatr Diabetes. 2016;17(22):56-64.
Craig ME, Nair S, Stein H, Rawlinson WD. Viruses and type 1 diabetes: a new look at an old story. Pediatr Diabetes. 2013;14(3):149-158.
Kramna L, Kolarova K, Oikarinen S, et al. Gut virome sequencing in children with early islet autoimmunity. Diabetes Care. 2015;38:930-933.
Zhao G, Vatanen T, Droit L, et al. Intestinal virome changes precede autoimmunity in type I diabetes-susceptible children. Proc Natl Acad Sci U S A. 2017;114:6166-6175.
Kim KW, Horton JL, Pang CNI, et al. Higher abundance of enterovirus a species in the gut of children with islet autoimmunity. Sci Rep. 2019;9:1749.
Vehik K, Lynch KF, Wong MC, et al. Prospective virome analyses in young children at increased genetic risk for type 1 diabetes. Nat Med. 2019;25:1865-1872.
Alhazmi A, Sane F, Lazrek M, et al. Enteroviruses and type 1 diabetes mellitus: an overlooked relationship in some regions. Microorganisms. 2020;8(10):1458.
Cinek O, Kramna L, Mazankova K, et al. The bacteriome at the onset of type 1 diabetes: a study from four geographically distant African and Asian countries. Diabetes Res Clin Pract. 2018;144:51-62.
Kramna L, Cinek O. Virome sequencing of stool samples. Methods Mol Biol. 1838;2018:59-83.
Honkanen H, Oikarinen S, Pakkanen O, et al. Human enterovirus 71 strains in the background population and in hospital patients in Finland. J Clin Virol. 2013;56:348-353.
Corless CE, Guiver M, Borrow R, et al. Development and evaluation of a 'real-time' RT-PCR for the detection of enterovirus and parechovirus RNA in CSF and throat swab samples. J Med Virol. 2002;67:555-562.
Claas EC, Schilham MW, de Brouwer CS, et al. Internally controlled real-time PCR monitoring of adenovirus DNA load in serum or plasma of transplant recipients. J Clin Microbiol. 2005;43:1738-1744.
Kantola K, Sadeghi M, Antikainen J, et al. Real-time quantitative PCR detection of four human bocaviruses. J Clin Microbiol. 2010;48:4044-4050.
Oka T, Katayama K, Hansman GS, et al. Detection of human sapovirus by real-time reverse transcription-polymerase chain reaction. J Med Virol. 2006;78:1347-1353.
Kageyama T, Kojima S, Shinohara M, et al. Broadly reactive and highly sensitive assay for Norwalk-like viruses based on real-time quantitative reverse transcription-PCR. J Clin Microbiol. 2003;41:1548-1557.
Wright ES, Vetsigian KH. Quality filtering of Illumina index reads mitigates sample cross-talk. BMC Genomics. 2016;17:876.
Lin J, Kramna L, Autio R, Hyoty H, Nykter M, Cinek O. Vipie: web pipeline for parallel characterization of viral populations from multiple NGS samples. BMC Genomics. 2017;18:378.
McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217.
Oksanen J, Guillaume Blanchet F, Friendly M, Kindt R, Legendre P, McGlinn D, et al., Vegan: community ecology package. R Package Version 25-6. 2019.
Asplund M, Kjartansdottir KR, Mollerup S, et al. Contaminating viral sequences in high-throughput sequencing viromics: a linkage study of 700 sequencing libraries. Clin Microbiol Infect. 2019;25:1277-1285.
Li X, Atkinson MA. The role for gut permeability in the pathogenesis of type 1 diabetes-a solid or leaky concept? Pediatr Diabetes. 2015;16:485-492.
Morandi E, Tanasescu R, Tarlinton RE, et al. The association between human endogenous retroviruses and multiple sclerosis: a systematic review and meta-analysis. PLoS One. 2017;12:e0172415.
Karlsson OE, Belak S, Granberg F. The effect of preprocessing by sequence-independent, single-primer amplification (SISPA) on metagenomic detection of viruses. Biosecur Bioterror. 2013;11(1):227-234.
Morandi E, Tarlinton RE, Tanasescu R, Gran B. Human endogenous retroviruses and multiple sclerosis: causation, association, or after-effect? Mult Scler. 2017;23:1050-1055.
Levet S, Charvet B, Bertin A, Deschaumes A, Perron H, Hober D. Human endogenous retroviruses and type 1 diabetes. Curr Diab Rep. 2019;19:141.
Curtin F, Bernard C, Levet S, et al. A new therapeutic approach for type 1 diabetes: rationale for GNbAC1, an anti-HERV-W-Env monoclonal antibody. Diabetes Obes Metab. 2018;20:2075-2084.
Osundare FA, Opaleye OO, Akindele AA, et al. Detection and characterization of human enteroviruses, human Cosaviruses, and a new human Parechovirus type in healthy individuals in Osun state, Nigeria, 2016/2017. Viruses. 2019;11(11):1037.
Monica B, Ramani S, Banerjee I, et al. Human caliciviruses in symptomatic and asymptomatic infections in children in Vellore, South India. J Med Virol. 2007;79:544-551.
Spandole S, Cimponeriu D, Berca LM, Mihaescu G. Human anelloviruses: an update of molecular, epidemiological and clinical aspects. Arch Virol. 2015;160:893-908.
Maximova N, Pizzol A, Ferrara G, Maestro A, Tamaro P. Does Teno torque virus induce autoimmunity after hematopoietic stem cell transplantation? A case report. J Pediatr Hematol Oncol. 2015;37:194-197.
Tapia G, Chuda K, Kahrs CR, et al. Parechovirus infection in early childhood and association with subsequent celiac disease. Am J Gastroenterol. 2020. https://doi.org/10.14309/ajg.0000000000001003.
Salem N, Mansour A, Ciuffo M, Falk BW, Turina M. A new tobamovirus infecting tomato crops in Jordan. Arch Virol. 2016;161:503-506.
Tang KF, Le Groumellec M, Lightner DV. Novel, closely related, white spot syndrome virus (WSSV) genotypes from Madagascar, Mozambique and the Kingdom of Saudi Arabia. Dis Aquat Organ. 2013;106:1-6.
Yinda CK, Vanhulle E, Conceicao-Neto N, et al. Gut virome analysis of Cameroonians reveals high diversity of enteric viruses, including potential interspecies transmitted viruses. mSphere. 2019;4(1):e00585-18.
Lovell D, Pawlowsky-Glahn V, Egozcue JJ, Marguerat S, Bahler J. Proportionality: a valid alternative to correlation for relative data. PLoS Comput Biol. 2015;11:e1004075.
Dillies MA, Rau A, Aubert J, et al. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief Bioinform. 2013;14:671-683.