Application of an Arbitrary Lagrangian-Eulerian Method to Modelling the Machining of Rigid Polyurethane Foam
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-25821S
Grantová Agentura České Republiky
PubMed
33800540
PubMed Central
PMC8037215
DOI
10.3390/ma14071654
PII: ma14071654
Knihovny.cz E-zdroje
- Klíčová slova
- Arbitrary Lagrangian Eulerian, PUR foam, finite element (FE) analyses, machining,
- Publikační typ
- časopisecké články MeSH
Rigid polyurethane (PUR) foam, which has an extensive range of construction, engineering, and healthcare applications, is commonly used in technical practice. PUR foam is a brittle material, and its mechanical material properties are strongly dependent on temperature and strain rate. Our work aimed to create a robust FE model enabling the simulation of PUR foam machining and verify the results of FE simulations using the experiments' results. We created a complex FE model using the Arbitrary Lagrangian-Eulerian (ALE) method. In the developed FE model, a constitutive material model was used in which the dependence of the strain rate, damage initiation, damage propagation, and plastic deformation on temperature was implemented. To verify the FE analyses' results with experimentally measured data, we measured the maximum temperature during PUR foam drilling with different densities (10, 25, and 40 PCF) and at various cutting speeds. The FE models with a constant cutting speed of 500 mm/s and various PUR foam densities led to slightly higher Tmax values, where the differences were 13.1% (10 PCF), 7.0% (25 PCF), and 10.0% (40 PCF). The same situation was observed for the simulation results related to various cutting speeds at a constant PUR foam density of 40 PCF, where the differences were 25.3% (133 mm/s), 10.1% (500 mm/s), and 15.5% (833 mm/s). The presented results show that the ALE method provides a good match with the experimental data and can be used for accurate simulation of rigid PUR foam machining.
Zobrazit více v PubMed
Gama N., Ferreira A., Barros-Timmons A. Polyurethane Foams: Past, Present, and Future. Materials. 2018;11:1841. doi: 10.3390/ma11101841. PubMed DOI PMC
Harith I.K. Study on polyurethane foamed concrete for use in structural applications. Case Stud. Constr. Mater. 2018;8:79–86. doi: 10.1016/j.cscm.2017.11.005. DOI
Ionescu M. Chemistry and Technology of Polyols for Polyurethanes. iSmithers Rapra Publishing; Shrewsbury, UK: 2005.
Formela K., Hejna A., Zedler L., Przybysz M., Ryl J., Saeb M.R., Piszczyk L. Structural, thermal and physico-mechanical properties of polyurethane brewers spent grain composite foams modified with ground tire rubber. Ind. Crops Prod. 2017;108:844–852. doi: 10.1016/j.indcrop.2017.07.047. DOI
Zhang M., Pan H., Zhang L., Hu L., Zhou Y. Study of the mechanical, thermal properties and flame retardancy of ofrigid polyurethane foams prepared from modified castor-oil-basedpolyols. Ind. Crops Prod. 2014;59:1595–1599. doi: 10.1016/j.indcrop.2014.05.016. DOI
Chen W., Lu F., Winfree N. High-strain-rate Compressive Behavior of a Rigid Polyurethane Foam with Various Densities. Exp. Mech. 2002;42:65–73. doi: 10.1007/BF02411053. DOI
Mane J.V., Chandra S., Sharma S., Ali H., Chavan V.M., Manjunath B.S., Patel R.J. Mechanical Property Evaluation of Polyurethane Foam under Quasi-static and Dynamic Strain Rates—An Experimental Study. Procedia Eng. 2017;173:726–731. doi: 10.1016/j.proeng.2016.12.160. DOI
Burgaz E., Kendirlioglu C. Thermomechanical behavior and thermal stability of polyurethane rigid nanocomposite foams containing binary nanoparticle mixtures. Polym. Test. 2019;77:105930. doi: 10.1016/j.polymertesting.2019.105930. DOI
Pellizzi E., Lattuati-Derieux A., Lavedrine B., Cheradame H. Degradation of polyurethane ester foam artifacts: Chemical properties, mechanical properties and comparison between accelerated and natural degradation. Polym. Degrad. Stab. 2014;107:255–261. doi: 10.1016/j.polymdegradstab.2013.12.018. DOI
Er M.S., Altinel L., Eroglu M., Verim O., Demir T., Atmaca H. Suture anchor fixation strength with or without augmentation in osteopenic and severely osteoporotic bones in rotator cuff repair: A biomechanical study on polyurethane foam model. J. Orthop. Surg. Res. 2014;48:247–253. doi: 10.1186/1749-799X-9-48. PubMed DOI PMC
Nowak B. Experimental study on the loosening of pedicle screws implanted to synthetic bone vertebra models and under non-pull-out mechanical loads. J. Mech. Behav. Biomed. 2019;98:200–204. doi: 10.1016/j.jmbbm.2019.06.013. PubMed DOI
Hollensteiner M., Esterer B., Furst D., Schrempf A., Augat P. Development of open-cell polyurethane-based bone surrogates for biomechanical testing of pedicle screws. J. Mech. Behav. Biomed. 2019;97:247–253. doi: 10.1016/j.jmbbm.2019.05.038. PubMed DOI
Oroszlany A., Nagy P., Kovacs J.G. Compressive Properties of Commercially Available PVC Foams Intended for Use as Mechanical Models for Human Cancellous Bone. Acta Polytech. Hung. 2015;12:89–101.
Arrazola P.J., Ozel T. Investigations on the effects of friction modeling in finite element simulation of machining. Int. J. Mech. Sci. 2010;52:31–42. doi: 10.1016/j.ijmecsci.2009.10.001. DOI
Courbon C., Mabrouki T., Rech J., Mazuyer D., D’Eramo E. On the existence of a thermal contact resistance at the tool-chip interface in dry cutting of AISI 1045: Formation mechanisms and influence on the cutting process. Appl. Therm. Eng. 2013;50:1311–1325. doi: 10.1016/j.applthermaleng.2012.06.047. DOI
Pimenov D., Guzeev V. Mathematical model of plowing forces to account for flank wear using FME modeling for orthogonal cutting scheme. Int. J. Adv. Manuf. Technol. 2017;89:3149–3159. doi: 10.1007/s00170-016-9216-x. DOI
Dhaliwal G., Anandan S., Chandrashekhara K., Lees J., Nam P. Development and characterization of polyurethane foams with substitution of polyether polyol with soy-based polyol. Eur. Polym. J. 2018;107:105–117. doi: 10.1016/j.eurpolymj.2018.08.001. DOI
Briody C., Duignan B., Jerrams S., Tiernan S. The implementation of a visco-hyperelastic numerical material model for simulating the behaviour of polymer foam materials. Comput. Mater. Sci. 2012;64:47–51. doi: 10.1016/j.commatsci.2012.04.012. DOI
Avevor Y., Vincent J., Faure L., Moufki A., Philippon S. An ALE approach for the chip formation process in high speed machining with transient cutting conditions: Modeling and experimental validation. Int. J. Mech. Sci. 2017;130:546–557. doi: 10.1016/j.ijmecsci.2017.06.021. DOI
Haglund A., Kishawy H., Rogers R. An exploration of friction models for the chip-tool interface using an Arbitrary Lagrangian–Eulerian finite element model. Wear. 2008;265:452–460. doi: 10.1016/j.wear.2007.11.025. DOI
Johnson G., Cook W. A constitutive model and data for metals subjected to large strains high strain rates and high temperatures; Proceedings of the 7th International Symp. Balistics; Hague, The Netherlands. 19–21 April 1983.
ABAQUS Inc. ABAQUS Analysis UserÂ’s Manual, Version 2018. ABAQUS Inc.; London, UK: 2018.
Ducobu F., Riviere-Lorphevre E., Filippi E. Application of the Coupled Eulerian-Lagrangian (CEL) method to the modeling of orthogonal cutting. Eur. J. Mech. A-Solid. 2016;59:58–66. doi: 10.1016/j.euromechsol.2016.03.008. DOI
Zetterberg M. Ph.D. Thesis. KTH Royal Institute of Technology; Stockholm, Sweden: 2014. A Critical Overview of Machining Simulations in ABAQUS.