Kinetics of Guided Growth of Horizontal GaN Nanowires on Flat and Faceted Sapphire Surfaces

. 2021 Mar 03 ; 11 (3) : . [epub] 20210303

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33802317

Grantová podpora
838702 European Research Council - International
2444/19 Israel Science Foundation
810626 Strengthening Nanoscience and Nanotechnology Research at CEITEC (SINNCE)
19-72-30004 Russian Science Foundation

The bottom-up assembly of nanowires facilitates the control of their dimensions, structure, orientation and physical properties. Surface-guided growth of planar nanowires has been shown to enable their assembly and alignment on substrates during growth, thus eliminating the need for additional post-growth processes. However, accurate control and understanding of the growth of the planar nanowires were achieved only recently, and only for ZnSe and ZnS nanowires. Here, we study the growth kinetics of surface-guided planar GaN nanowires on flat and faceted sapphire surfaces, based on the previous growth model. The data are fully consistent with the same model, presenting two limiting regimes-either the Gibbs-Thomson effect controlling the growth of the thinner nanowires or surface diffusion controlling the growth of thicker ones. The results are qualitatively compared with other semiconductors surface-guided planar nanowires materials, demonstrating the generality of the growth mechanism. The rational approach enabled by this general model provides better control of the nanowire (NW) dimensions and expands the range of materials systems and possible application of NW-based devices in nanotechnology.

Zobrazit více v PubMed

Brus L.E. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J. Chem. Phys. 1983;79:5566–5571. doi: 10.1063/1.445676. DOI

Xia Y., Yang P., Sun Y., Wu Y., Mayers B., Gates B., Yin Y., Kim F., Yan H. One-Dimensional Nanostructures: Synthesis, Characterization, and Applications. Adv. Mater. 2003;15:353–389. doi: 10.1002/adma.200390087. DOI

Samuelson L. Self-forming nanoscale devices. Mater. Today. 2003;6:22–31. doi: 10.1016/S1369-7021(03)01026-5. DOI

Duan X., Huang Y., Cui Y., Wang J., Lieber C.M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature. 2001;409:66–69. doi: 10.1038/35051047. PubMed DOI

Huang M.H., Mao S., Feick H., Yan H., Wu Y., Kind H., Weber E., Russo R., Yang P. Room-Temperature Ultraviolet Nanowire Nanolasers. Science. 2001;292:1897–1899. doi: 10.1126/science.1060367. PubMed DOI

Kim D.R., Lee C.H., Zheng X. Direct Growth of Nanowire Logic Gates and Photovoltaic Devices. Nano Lett. 2010;10:1050–1054. doi: 10.1021/nl100011z. PubMed DOI

Schvartzman M., Tsivion D., Mahalu D., Raslin O., Joselevich E. Self-integration of nanowires into circuits via guided growth. Proc. Natl. Acad. Sci. USA. 2013;110:15195–15200. doi: 10.1073/pnas.1306426110. PubMed DOI PMC

Gazibegovic S., Car D., Zhang H., Balk S.C., Logan J.A., de Moor M.W.A., Cassidy M.C., Schmits R., Xu D., Wang G., et al. Epitaxy of advanced nanowire quantum devices. Nature. 2017;548:434. doi: 10.1038/nature23468. PubMed DOI

Gül Ö., Zhang H., Bommer J.D.S., de Moor M.W.A., Car D., Plissard S.R., Bakkers E.P.A.M., Geresdi A., Watanabe K., Taniguchi T., et al. Ballistic Majorana nanowire devices. Nat. Nanotechnol. 2018;13:192–197. doi: 10.1038/s41565-017-0032-8. PubMed DOI

Wagner R.S., Ellis W.C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 1964;4:89–90. doi: 10.1063/1.1753975. DOI

Fan Z., Ho J.C., Jacobson Z.A., Yerushalmi R., Alley R.L., Razavi H., Javey A. Wafer-Scale Assembly of Highly Ordered Semiconductor Nanowire Arrays by Contact Printing. Nano Lett. 2008;8:20–25. doi: 10.1021/nl071626r. PubMed DOI

Huang Y., Duan X., Wei Q., Lieber C.M. Directed Assembly of One-Dimensional Nanostructures into Functional Networks. Science. 2001;291:630–633. doi: 10.1126/science.291.5504.630. PubMed DOI

Smith P.A., Nordquist C.D., Jackson T.N., Mayer T.S., Martin B.R., Mbindyo J., Mallouk T.E. Electric-field assisted assembly and alignment of metallic nanowires. Appl. Phys. Lett. 2000;77:1399–1401. doi: 10.1063/1.1290272. DOI

Jin S., Whang D., McAlpine M.C., Friedman R.S., Wu Y., Lieber C.M. Scalable Interconnection and Integration of Nanowire Devices without Registration. Nano Lett. 2004;4:915–919. doi: 10.1021/nl049659j. DOI

Tsivion D., Schvartzman M., Popovitz-Biro R., von Huth P., Joselevich E. Guided Growth of Millimeter-Long Horizontal Nanowires with Controlled Orientations. Science. 2011;333:1003–1007. doi: 10.1126/science.1208455. PubMed DOI

Nikoobakht B., Michaels C.A., Stranick S.J., Vaudin M.D. Horizontal growth and in situ assembly of oriented zinc oxide nanowires. Appl. Phys. Lett. 2004;85:3244–3246. doi: 10.1063/1.1803951. DOI

Fortuna S.A., Wen J., Chun I.S., Li X. Planar GaAs Nanowires on GaAs (100) Substrates: Self-Aligned, Nearly Twin-Defect Free, and Transfer-Printable. Nano Lett. 2008;8:4421–4427. doi: 10.1021/nl802331m. PubMed DOI

Ben-Zvi R., Burrows H., Schvartzman M., Bitton O., Pinkas I., Kaplan-Ashiri I., Brontvein O., Joselevich E. In-Plane Nanowires with Arbitrary Shapes on Amorphous Substrates by Artificial Epitaxy. ACS Nano. 2019;13:5572–5582. doi: 10.1021/acsnano.9b00538. PubMed DOI PMC

Morkoç H. Handbook of Nitride Semiconductors and Devices, Materials Properties, Physics and Growth. Volume 1 John Wiley & Sons; Hoboken, NJ, USA: 2009.

Guo W., Zhang M., Banerjee A., Bhattacharya P. Catalyst-Free InGaN/GaN Nanowire Light Emitting Diodes Grown on (001) Silicon by Molecular Beam Epitaxy. Nano Lett. 2010;10:3355–3359. doi: 10.1021/nl101027x. PubMed DOI

Sarwar A.T.M.G., May B.J., Chisholm M.F., Duscher G.J., Myers R.C. Ultrathin GaN quantum disk nanowire LEDs with sub-250 nm electroluminescence. Nanoscale. 2016;8:8024–8032. doi: 10.1039/C6NR00132G. PubMed DOI

Gradečak S., Qian F., Li Y., Park H.-G., Lieber C.M. GaN nanowire lasers with low lasing thresholds. Appl. Phys. Lett. 2005;87:173111. doi: 10.1063/1.2115087. DOI

Johnson J.C., Choi H.-J., Knutsen K.P., Schaller R.D., Yang P., Saykally R.J. Single gallium nitride nanowire lasers. Nat. Mater. 2002;1:106–110. doi: 10.1038/nmat728. PubMed DOI

He Y., Huang Z., Zhang M., Wu M., Mi M., Wang C., Yang L., Zhang C., Guo L., Ma X., et al. Temperature-Dependent Characteristics of AlGaN/GaN Nanowire Channel High Electron Mobility Transistors. Phys. Status Solidi A. 2019;216:1900396. doi: 10.1002/pssa.201900396. DOI

He Y., Wang C., Mi M., Zhang M., Zhu Q., Zhang P., Wu J., Zhang H., Zheng X., Yang L.J.A.P.E. Investigation of enhancement-mode AlGaN/GaN nanowire channel high-electron-mobility transistor with oxygen-containing plasma treatment. Appl. Phys. Express. 2017;10:056502. doi: 10.7567/APEX.10.056502. DOI

Tchernycheva M., Sartel C., Cirlin G., Travers L., Patriarche G., Largeau L., Mauguin O., Harmand J.-C., Dang L.S., Renard J., et al. GaN/AlN free-standing nanowires grown by molecular beam epitaxy. Phys. Status Solidi C. 2008;5:1556–1558. doi: 10.1002/pssc.200778479. DOI

Qian F., Li Y., Gradečak S., Park H.-G., Dong Y., Ding Y., Wang Z.L., Lieber C.M. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nat. Mater. 2008;7:701–706. doi: 10.1038/nmat2253. PubMed DOI

Lim S.K., Brewster M., Qian F., Li Y., Lieber C.M., Gradečak S. Direct Correlation between Structural and Optical Properties of III−V Nitride Nanowire Heterostructures with Nanoscale Resolution. Nano Lett. 2009;9:3940–3944. doi: 10.1021/nl9025743. PubMed DOI

Armitage R., Tsubaki K. Multicolour luminescence from InGaN quantum wells grown over GaN nanowire arrays by molecular-beam epitaxy. Nanotechnology. 2010;21:195202. doi: 10.1088/0957-4484/21/19/195202. PubMed DOI

Tsivion D., Joselevich E. Guided Growth of Epitaxially Coherent GaN Nanowires on SiC. Nano Lett. 2013;13:5491–5496. doi: 10.1021/nl4030769. PubMed DOI

Tsivion D., Joselevich E. Guided Growth of Horizontal GaN Nanowires on Spinel with Orientation-Controlled Morphologies. J. Phys. Chem. C. 2014;118:19158–19164. doi: 10.1021/jp504785v. DOI

Maliakkal C.B., Hatui N., Bapat R.D., Chalke B.A., Rahman A.A., Bhattacharya A. The Mechanism of Ni-Assisted GaN Nanowire Growth. Nano Lett. 2016;16:7632–7638. doi: 10.1021/acs.nanolett.6b03604. PubMed DOI

Fröberg L.E., Seifert W., Johansson J. Diameter-dependent growth rate of InAs nanowires. Phys. Rev. B. 2007;76:153401. doi: 10.1103/PhysRevB.76.153401. DOI

Dubrovskii V.G., Sibirev N.V., Cirlin G.E., Soshnikov I.P., Chen W.H., Larde R., Cadel E., Pareige P., Xu T., Grandidier B., et al. Gibbs-Thomson and diffusion-induced contributions to the growth rate of Si, InP, and GaAs nanowires. Phys. Rev. B. 2009;79:205316. doi: 10.1103/PhysRevB.79.205316. DOI

Lim S.K., Crawford S., Gradečak S. Growth mechanism of GaN nanowires: Preferred nucleation site and effect of hydrogen. Nanotechnology. 2010;21:345604. doi: 10.1088/0957-4484/21/34/345604. PubMed DOI

Goren-Ruck L., Tsivion D., Schvartzman M., Popovitz-Biro R., Joselevich E. Guided Growth of Horizontal GaN Nanowires on Quartz and Their Transfer to Other Substrates. ACS Nano. 2014;8:2838–2847. doi: 10.1021/nn4066523. PubMed DOI

Oksenberg E., Martí-Sánchez S., Popovitz-Biro R., Arbiol J., Joselevich E. Surface-Guided Core–Shell ZnSe@ZnTe Nanowires as Radial p–n Heterojunctions with Photovoltaic Behavior. ACS Nano. 2017;11:6155–6166. doi: 10.1021/acsnano.7b02199. PubMed DOI

Oksenberg E., Popovitz-Biro R., Rechav K., Joselevich E. Guided Growth of Horizontal ZnSe Nanowires and their Integration into High-Performance Blue–UV Photodetectors. Adv. Mater. 2015;27:3999–4005. doi: 10.1002/adma.201500736. PubMed DOI

Reut G., Oksenberg E., Popovitz-Biro R., Rechav K., Joselevich E. Guided Growth of Horizontal p-Type ZnTe Nanowires. J. Phys. Chem. C. 2016;120:17087–17100. doi: 10.1021/acs.jpcc.6b05191. PubMed DOI PMC

Rothman A., Forsht T., Danieli Y., Popovitz-Biro R., Rechav K., Houben L., Joselevich E. Guided Growth of Horizontal ZnS Nanowires on Flat and Faceted Sapphire Surfaces. J. Phys. Chem. C. 2018;122:12413–12420. doi: 10.1021/acs.jpcc.8b04063. DOI

Shalev E., Oksenberg E., Rechav K., Popovitz-Biro R., Joselevich E. Guided CdSe Nanowires Parallelly Integrated into Fast Visible-Range Photodetectors. ACS Nano. 2017;11:213–220. doi: 10.1021/acsnano.6b04469. PubMed DOI PMC

Tsivion D., Schvartzman M., Popovitz-Biro R., Joselevich E. Guided Growth of Horizontal ZnO Nanowires with Controlled Orientations on Flat and Faceted Sapphire Surfaces. ACS Nano. 2012;6:6433–6445. doi: 10.1021/nn3020695. PubMed DOI

Xu J., Oksenberg E., Popovitz-Biro R., Rechav K., Joselevich E. Bottom-Up Tri-gate Transistors and Submicrosecond Photodetectors from Guided CdS Nanowalls. J. Am. Chem. Soc. 2017;139:15958–15967. doi: 10.1021/jacs.7b09423. PubMed DOI

Xu J., Rechav K., Popovitz-Biro R., Nevo I., Feldman Y., Joselevich E. High-Gain 200 ns Photodetectors from Self-Aligned CdS-CdSe Core-Shell Nanowalls. Adv. Mater. 2018;30:e1800413. doi: 10.1002/adma.201800413. PubMed DOI

Zi Y., Jung K., Zakharov D., Yang C. Understanding Self-Aligned Planar Growth of InAs Nanowires. Nano Lett. 2013;13:2786–2791. doi: 10.1021/nl4010332. PubMed DOI

Shen Y., Chen R., Yu X., Wang Q., Jungjohann K.L., Dayeh S.A., Wu T. Gibbs–Thomson Effect in Planar Nanowires: Orientation and Doping Modulated Growth. Nano Lett. 2016;16:4158–4165. doi: 10.1021/acs.nanolett.6b01037. PubMed DOI

Rothman A., Dubrovskii V.G., Joselevich E. Kinetics and mechanism of planar nanowire growth. Proc. Natl. Acad. Sci. USA. 2020;117:152. doi: 10.1073/pnas.1911505116. PubMed DOI PMC

Choi J.-H., Kim D.-Y., Hockey B.J., Wiederhorn S.M., Handwerker C.A., Blendell J.E., Carter W.C., Roosen A.R. Equilibrium Shape of Internal Cavities in Sapphire. J. Am. Ceram. Soc. 1997;80:62–68. doi: 10.1111/j.1151-2916.1997.tb02791.x. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Real-Time Study of Surface-Guided Nanowire Growth by In Situ Scanning Electron Microscopy

. 2022 Nov 22 ; 16 (11) : 18757-18766. [epub] 20221028

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...