Kinetics of Guided Growth of Horizontal GaN Nanowires on Flat and Faceted Sapphire Surfaces
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
838702
European Research Council - International
2444/19
Israel Science Foundation
810626
Strengthening Nanoscience and Nanotechnology Research at CEITEC (SINNCE)
19-72-30004
Russian Science Foundation
PubMed
33802317
PubMed Central
PMC8002117
DOI
10.3390/nano11030624
PII: nano11030624
Knihovny.cz E-zdroje
- Klíčová slova
- gallium nitride, guided growth, nanowires, surface-diffusion,
- Publikační typ
- časopisecké články MeSH
The bottom-up assembly of nanowires facilitates the control of their dimensions, structure, orientation and physical properties. Surface-guided growth of planar nanowires has been shown to enable their assembly and alignment on substrates during growth, thus eliminating the need for additional post-growth processes. However, accurate control and understanding of the growth of the planar nanowires were achieved only recently, and only for ZnSe and ZnS nanowires. Here, we study the growth kinetics of surface-guided planar GaN nanowires on flat and faceted sapphire surfaces, based on the previous growth model. The data are fully consistent with the same model, presenting two limiting regimes-either the Gibbs-Thomson effect controlling the growth of the thinner nanowires or surface diffusion controlling the growth of thicker ones. The results are qualitatively compared with other semiconductors surface-guided planar nanowires materials, demonstrating the generality of the growth mechanism. The rational approach enabled by this general model provides better control of the nanowire (NW) dimensions and expands the range of materials systems and possible application of NW-based devices in nanotechnology.
CEITEC Brno University of Technology Purkyňova 123 612 00 Brno Czech Republic
Department of Materials and Interfaces Weizmann Institute of Science Rehovot 76100 Israel
Zobrazit více v PubMed
Brus L.E. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J. Chem. Phys. 1983;79:5566–5571. doi: 10.1063/1.445676. DOI
Xia Y., Yang P., Sun Y., Wu Y., Mayers B., Gates B., Yin Y., Kim F., Yan H. One-Dimensional Nanostructures: Synthesis, Characterization, and Applications. Adv. Mater. 2003;15:353–389. doi: 10.1002/adma.200390087. DOI
Samuelson L. Self-forming nanoscale devices. Mater. Today. 2003;6:22–31. doi: 10.1016/S1369-7021(03)01026-5. DOI
Duan X., Huang Y., Cui Y., Wang J., Lieber C.M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature. 2001;409:66–69. doi: 10.1038/35051047. PubMed DOI
Huang M.H., Mao S., Feick H., Yan H., Wu Y., Kind H., Weber E., Russo R., Yang P. Room-Temperature Ultraviolet Nanowire Nanolasers. Science. 2001;292:1897–1899. doi: 10.1126/science.1060367. PubMed DOI
Kim D.R., Lee C.H., Zheng X. Direct Growth of Nanowire Logic Gates and Photovoltaic Devices. Nano Lett. 2010;10:1050–1054. doi: 10.1021/nl100011z. PubMed DOI
Schvartzman M., Tsivion D., Mahalu D., Raslin O., Joselevich E. Self-integration of nanowires into circuits via guided growth. Proc. Natl. Acad. Sci. USA. 2013;110:15195–15200. doi: 10.1073/pnas.1306426110. PubMed DOI PMC
Gazibegovic S., Car D., Zhang H., Balk S.C., Logan J.A., de Moor M.W.A., Cassidy M.C., Schmits R., Xu D., Wang G., et al. Epitaxy of advanced nanowire quantum devices. Nature. 2017;548:434. doi: 10.1038/nature23468. PubMed DOI
Gül Ö., Zhang H., Bommer J.D.S., de Moor M.W.A., Car D., Plissard S.R., Bakkers E.P.A.M., Geresdi A., Watanabe K., Taniguchi T., et al. Ballistic Majorana nanowire devices. Nat. Nanotechnol. 2018;13:192–197. doi: 10.1038/s41565-017-0032-8. PubMed DOI
Wagner R.S., Ellis W.C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 1964;4:89–90. doi: 10.1063/1.1753975. DOI
Fan Z., Ho J.C., Jacobson Z.A., Yerushalmi R., Alley R.L., Razavi H., Javey A. Wafer-Scale Assembly of Highly Ordered Semiconductor Nanowire Arrays by Contact Printing. Nano Lett. 2008;8:20–25. doi: 10.1021/nl071626r. PubMed DOI
Huang Y., Duan X., Wei Q., Lieber C.M. Directed Assembly of One-Dimensional Nanostructures into Functional Networks. Science. 2001;291:630–633. doi: 10.1126/science.291.5504.630. PubMed DOI
Smith P.A., Nordquist C.D., Jackson T.N., Mayer T.S., Martin B.R., Mbindyo J., Mallouk T.E. Electric-field assisted assembly and alignment of metallic nanowires. Appl. Phys. Lett. 2000;77:1399–1401. doi: 10.1063/1.1290272. DOI
Jin S., Whang D., McAlpine M.C., Friedman R.S., Wu Y., Lieber C.M. Scalable Interconnection and Integration of Nanowire Devices without Registration. Nano Lett. 2004;4:915–919. doi: 10.1021/nl049659j. DOI
Tsivion D., Schvartzman M., Popovitz-Biro R., von Huth P., Joselevich E. Guided Growth of Millimeter-Long Horizontal Nanowires with Controlled Orientations. Science. 2011;333:1003–1007. doi: 10.1126/science.1208455. PubMed DOI
Nikoobakht B., Michaels C.A., Stranick S.J., Vaudin M.D. Horizontal growth and in situ assembly of oriented zinc oxide nanowires. Appl. Phys. Lett. 2004;85:3244–3246. doi: 10.1063/1.1803951. DOI
Fortuna S.A., Wen J., Chun I.S., Li X. Planar GaAs Nanowires on GaAs (100) Substrates: Self-Aligned, Nearly Twin-Defect Free, and Transfer-Printable. Nano Lett. 2008;8:4421–4427. doi: 10.1021/nl802331m. PubMed DOI
Ben-Zvi R., Burrows H., Schvartzman M., Bitton O., Pinkas I., Kaplan-Ashiri I., Brontvein O., Joselevich E. In-Plane Nanowires with Arbitrary Shapes on Amorphous Substrates by Artificial Epitaxy. ACS Nano. 2019;13:5572–5582. doi: 10.1021/acsnano.9b00538. PubMed DOI PMC
Morkoç H. Handbook of Nitride Semiconductors and Devices, Materials Properties, Physics and Growth. Volume 1 John Wiley & Sons; Hoboken, NJ, USA: 2009.
Guo W., Zhang M., Banerjee A., Bhattacharya P. Catalyst-Free InGaN/GaN Nanowire Light Emitting Diodes Grown on (001) Silicon by Molecular Beam Epitaxy. Nano Lett. 2010;10:3355–3359. doi: 10.1021/nl101027x. PubMed DOI
Sarwar A.T.M.G., May B.J., Chisholm M.F., Duscher G.J., Myers R.C. Ultrathin GaN quantum disk nanowire LEDs with sub-250 nm electroluminescence. Nanoscale. 2016;8:8024–8032. doi: 10.1039/C6NR00132G. PubMed DOI
Gradečak S., Qian F., Li Y., Park H.-G., Lieber C.M. GaN nanowire lasers with low lasing thresholds. Appl. Phys. Lett. 2005;87:173111. doi: 10.1063/1.2115087. DOI
Johnson J.C., Choi H.-J., Knutsen K.P., Schaller R.D., Yang P., Saykally R.J. Single gallium nitride nanowire lasers. Nat. Mater. 2002;1:106–110. doi: 10.1038/nmat728. PubMed DOI
He Y., Huang Z., Zhang M., Wu M., Mi M., Wang C., Yang L., Zhang C., Guo L., Ma X., et al. Temperature-Dependent Characteristics of AlGaN/GaN Nanowire Channel High Electron Mobility Transistors. Phys. Status Solidi A. 2019;216:1900396. doi: 10.1002/pssa.201900396. DOI
He Y., Wang C., Mi M., Zhang M., Zhu Q., Zhang P., Wu J., Zhang H., Zheng X., Yang L.J.A.P.E. Investigation of enhancement-mode AlGaN/GaN nanowire channel high-electron-mobility transistor with oxygen-containing plasma treatment. Appl. Phys. Express. 2017;10:056502. doi: 10.7567/APEX.10.056502. DOI
Tchernycheva M., Sartel C., Cirlin G., Travers L., Patriarche G., Largeau L., Mauguin O., Harmand J.-C., Dang L.S., Renard J., et al. GaN/AlN free-standing nanowires grown by molecular beam epitaxy. Phys. Status Solidi C. 2008;5:1556–1558. doi: 10.1002/pssc.200778479. DOI
Qian F., Li Y., Gradečak S., Park H.-G., Dong Y., Ding Y., Wang Z.L., Lieber C.M. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nat. Mater. 2008;7:701–706. doi: 10.1038/nmat2253. PubMed DOI
Lim S.K., Brewster M., Qian F., Li Y., Lieber C.M., Gradečak S. Direct Correlation between Structural and Optical Properties of III−V Nitride Nanowire Heterostructures with Nanoscale Resolution. Nano Lett. 2009;9:3940–3944. doi: 10.1021/nl9025743. PubMed DOI
Armitage R., Tsubaki K. Multicolour luminescence from InGaN quantum wells grown over GaN nanowire arrays by molecular-beam epitaxy. Nanotechnology. 2010;21:195202. doi: 10.1088/0957-4484/21/19/195202. PubMed DOI
Tsivion D., Joselevich E. Guided Growth of Epitaxially Coherent GaN Nanowires on SiC. Nano Lett. 2013;13:5491–5496. doi: 10.1021/nl4030769. PubMed DOI
Tsivion D., Joselevich E. Guided Growth of Horizontal GaN Nanowires on Spinel with Orientation-Controlled Morphologies. J. Phys. Chem. C. 2014;118:19158–19164. doi: 10.1021/jp504785v. DOI
Maliakkal C.B., Hatui N., Bapat R.D., Chalke B.A., Rahman A.A., Bhattacharya A. The Mechanism of Ni-Assisted GaN Nanowire Growth. Nano Lett. 2016;16:7632–7638. doi: 10.1021/acs.nanolett.6b03604. PubMed DOI
Fröberg L.E., Seifert W., Johansson J. Diameter-dependent growth rate of InAs nanowires. Phys. Rev. B. 2007;76:153401. doi: 10.1103/PhysRevB.76.153401. DOI
Dubrovskii V.G., Sibirev N.V., Cirlin G.E., Soshnikov I.P., Chen W.H., Larde R., Cadel E., Pareige P., Xu T., Grandidier B., et al. Gibbs-Thomson and diffusion-induced contributions to the growth rate of Si, InP, and GaAs nanowires. Phys. Rev. B. 2009;79:205316. doi: 10.1103/PhysRevB.79.205316. DOI
Lim S.K., Crawford S., Gradečak S. Growth mechanism of GaN nanowires: Preferred nucleation site and effect of hydrogen. Nanotechnology. 2010;21:345604. doi: 10.1088/0957-4484/21/34/345604. PubMed DOI
Goren-Ruck L., Tsivion D., Schvartzman M., Popovitz-Biro R., Joselevich E. Guided Growth of Horizontal GaN Nanowires on Quartz and Their Transfer to Other Substrates. ACS Nano. 2014;8:2838–2847. doi: 10.1021/nn4066523. PubMed DOI
Oksenberg E., Martí-Sánchez S., Popovitz-Biro R., Arbiol J., Joselevich E. Surface-Guided Core–Shell ZnSe@ZnTe Nanowires as Radial p–n Heterojunctions with Photovoltaic Behavior. ACS Nano. 2017;11:6155–6166. doi: 10.1021/acsnano.7b02199. PubMed DOI
Oksenberg E., Popovitz-Biro R., Rechav K., Joselevich E. Guided Growth of Horizontal ZnSe Nanowires and their Integration into High-Performance Blue–UV Photodetectors. Adv. Mater. 2015;27:3999–4005. doi: 10.1002/adma.201500736. PubMed DOI
Reut G., Oksenberg E., Popovitz-Biro R., Rechav K., Joselevich E. Guided Growth of Horizontal p-Type ZnTe Nanowires. J. Phys. Chem. C. 2016;120:17087–17100. doi: 10.1021/acs.jpcc.6b05191. PubMed DOI PMC
Rothman A., Forsht T., Danieli Y., Popovitz-Biro R., Rechav K., Houben L., Joselevich E. Guided Growth of Horizontal ZnS Nanowires on Flat and Faceted Sapphire Surfaces. J. Phys. Chem. C. 2018;122:12413–12420. doi: 10.1021/acs.jpcc.8b04063. DOI
Shalev E., Oksenberg E., Rechav K., Popovitz-Biro R., Joselevich E. Guided CdSe Nanowires Parallelly Integrated into Fast Visible-Range Photodetectors. ACS Nano. 2017;11:213–220. doi: 10.1021/acsnano.6b04469. PubMed DOI PMC
Tsivion D., Schvartzman M., Popovitz-Biro R., Joselevich E. Guided Growth of Horizontal ZnO Nanowires with Controlled Orientations on Flat and Faceted Sapphire Surfaces. ACS Nano. 2012;6:6433–6445. doi: 10.1021/nn3020695. PubMed DOI
Xu J., Oksenberg E., Popovitz-Biro R., Rechav K., Joselevich E. Bottom-Up Tri-gate Transistors and Submicrosecond Photodetectors from Guided CdS Nanowalls. J. Am. Chem. Soc. 2017;139:15958–15967. doi: 10.1021/jacs.7b09423. PubMed DOI
Xu J., Rechav K., Popovitz-Biro R., Nevo I., Feldman Y., Joselevich E. High-Gain 200 ns Photodetectors from Self-Aligned CdS-CdSe Core-Shell Nanowalls. Adv. Mater. 2018;30:e1800413. doi: 10.1002/adma.201800413. PubMed DOI
Zi Y., Jung K., Zakharov D., Yang C. Understanding Self-Aligned Planar Growth of InAs Nanowires. Nano Lett. 2013;13:2786–2791. doi: 10.1021/nl4010332. PubMed DOI
Shen Y., Chen R., Yu X., Wang Q., Jungjohann K.L., Dayeh S.A., Wu T. Gibbs–Thomson Effect in Planar Nanowires: Orientation and Doping Modulated Growth. Nano Lett. 2016;16:4158–4165. doi: 10.1021/acs.nanolett.6b01037. PubMed DOI
Rothman A., Dubrovskii V.G., Joselevich E. Kinetics and mechanism of planar nanowire growth. Proc. Natl. Acad. Sci. USA. 2020;117:152. doi: 10.1073/pnas.1911505116. PubMed DOI PMC
Choi J.-H., Kim D.-Y., Hockey B.J., Wiederhorn S.M., Handwerker C.A., Blendell J.E., Carter W.C., Roosen A.R. Equilibrium Shape of Internal Cavities in Sapphire. J. Am. Ceram. Soc. 1997;80:62–68. doi: 10.1111/j.1151-2916.1997.tb02791.x. DOI
Real-Time Study of Surface-Guided Nanowire Growth by In Situ Scanning Electron Microscopy