Influence of Extraction Solvent on the Phenolic Profile and Bioactivity of Two Achillea Species
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RO0418
Ministerstvo Zemědělství
PubMed
33805815
PubMed Central
PMC7999971
DOI
10.3390/molecules26061601
PII: molecules26061601
Knihovny.cz E-zdroje
- Klíčová slova
- Achillea abrotanoides Vis, Achillea lingulata Waldst, antimicrobial activity, antioxidant activity, extraction, phenolic compounds,
- MeSH
- antiinfekční látky chemie izolace a purifikace farmakologie MeSH
- antioxidancia chemie izolace a purifikace farmakologie MeSH
- bifenylové sloučeniny antagonisté a inhibitory MeSH
- druhová specificita MeSH
- fenoly chemie izolace a purifikace farmakologie MeSH
- flavonoidy chemie izolace a purifikace farmakologie MeSH
- fytonutrienty chemie izolace a purifikace farmakologie MeSH
- hydroxybenzoáty chemie izolace a purifikace farmakologie MeSH
- mikrobiální testy citlivosti MeSH
- pikráty antagonisté a inhibitory MeSH
- řebříček chemie klasifikace MeSH
- rostlinné extrakty chemie MeSH
- rozpouštědla MeSH
- tandemová hmotnostní spektrometrie MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 1,1-diphenyl-2-picrylhydrazyl MeSH Prohlížeč
- antiinfekční látky MeSH
- antioxidancia MeSH
- bifenylové sloučeniny MeSH
- fenoly MeSH
- flavonoidy MeSH
- fytonutrienty MeSH
- hydroxybenzoáty MeSH
- phenolic acid MeSH Prohlížeč
- pikráty MeSH
- rostlinné extrakty MeSH
- rozpouštědla MeSH
The phenolic composition, as well as the antioxidant and antimicrobial activities of two poorly investigated Achillea species, Achillea lingulata Waldst. and the endemic Achillea abrotanoides Vis., were studied. To obtain a more detailed phytochemical profile, four solvents with different polarities were used for the preparation of the plant extracts whose phenolic composition was analyzed using UHPLC-MS/MS (ultra-high performance liquid chromatography-tandem mass spectrometry). The results indicate that both of the investigated Achillea species are very rich in both phenolic acids and flavonoids, but that their profiles differ significantly. Chloroform extracts from both species had the highest yields and were the most chemically versatile. The majority of the examined extracts showed antimicrobial activity, while ethanolic extracts from both species were potent against all tested microorganisms. Furthermore, the antioxidant activity of the extracts was evaluated. It was found that the ethanolic extracts possessed the strongest antioxidant activities, although these extracts did not contain the highest amounts of detected phenolic compounds. In addition, several representatives of phenolic compounds were also assayed for these biological activities. Results suggest that ethanol is a sufficient solvent for the isolation of biologically active compounds from both Achillea species. Moreover, it was shown that the flavonoids naringenin and morin are mainly responsible for these antimicrobial activities, while caffeic, salicylic, chlorogenic, p-coumaric, p-hydroxybenzoic, and rosmarinic acid are responsible for the antioxidant activities of the Achillea extracts.
Zobrazit více v PubMed
Grodowska K., Parczewski A. Organic solvents in the pharmaceutical industry. Acta Pol. Pharm. Drug Res. 2010;67:3–12. PubMed
González-Montelongo R., Lobo M.G., González M. Antioxidant activity in banana peel extracts: Testing extraction conditions and related bioactive compounds. Food Chem. 2010;119:1030–1039. doi: 10.1016/j.foodchem.2009.08.012. DOI
Dorta E., Lobo M.G., Gonzalez M. Reutilization of mango byproducts: Study of the effect of extraction solvent and temper-ature on their antioxidant properties. J. Food Sci. 2012;77:80–88. doi: 10.1111/j.1750-3841.2011.02477.x. PubMed DOI
Lafka T.-I., Sinanoglou V., Lazos E.S. On the extraction and antioxidant activity of phenolic compounds from winery wastes. Food Chem. 2007;104:1206–1214. doi: 10.1016/j.foodchem.2007.01.068. DOI
Lapkin A.A., Plucinski P.K., Cutler M. Comparative Assessment of Technologies for Extraction of Artemisinin. J. Nat. Prod. 2006;69:1653–1664. doi: 10.1021/np060375j. PubMed DOI
Tyśkiewicz K., Konkol M., Rój E. The Application of supercritical fluid extraction in phenolic compounds isolation from natural plant materials. Molecules. 2018;23:2625. doi: 10.3390/molecules23102625. PubMed DOI PMC
Essien S.O., Young B., Baroutian S. Recent advances in subcritical water and supercritical carbon dioxide extraction of bioactive compounds from plant materials. Trends Food Sci. Technol. 2020;97:156–169. doi: 10.1016/j.tifs.2020.01.014. DOI
Villanueva-Bermejo D., Zahran F., Troconis D., Villalva M., Reglero G., Fornari T. Selective precipitation of phenolic compounds from Achillea millefolium L. extracts by supercritical anti-solvent technique. J. Supercrit. Fluids. 2017;120:52–58. doi: 10.1016/j.supflu.2016.10.011. DOI
Chemat F., Rombaut N., Sicaire A.-G., Meullemiestre A., Fabiano-Tixier A.-S., Abert-Vian M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochemistry. 2017;34:540–560. doi: 10.1016/j.ultsonch.2016.06.035. PubMed DOI
Savic Gajic I., Savic I., Boskov I., Žerajić S., Markovic I., Gajic D. Optimization of ultrasound-assisted extraction of phenolic compounds from black locust (Robiniae Pseudoacaciae) flowers and comparison with conventional methods. Antioxidants. 2019;8:248. doi: 10.3390/antiox8080248. PubMed DOI PMC
Savic I.M., Gajic I.M.S. Optimization of ultrasound-assisted extraction of polyphenols from wheatgrass (Triticum aestivum L.) J. Food Sci. Technol. 2020;57:2809–2818. doi: 10.1007/s13197-020-04312-w. PubMed DOI PMC
Paswan R., Park Y.W. Survivability of Salmonella and Escherichia coli O157:H7 pathogens and food safety concerns on com-mercial powder milk products. Dairy. 2020;1:189–201. doi: 10.3390/dairy1030014. DOI
Syahrul F., Wahyuni C.U., Notobroto H.B., Wasito E.B., Adi A.C., Dwirahmadi F. Transmission media of foodborne diseases as an index prediction of diarrheagenic Escherichia coli: Study at elementary school, Surabaya, Indonesia. Int. J. Environ. Res. Pub. Health. 2020;17:8227. doi: 10.3390/ijerph17218227. PubMed DOI PMC
Abril A.G., Villa T.G., Barros-Velázquez J., Cañas B., Sánchez-Pérez A., Calo-Mata P., Carrera M. Staphylococcus aureus Exotoxins and Their Detection in the Dairy Industry and Mastitis. Toxins. 2020;12:537. doi: 10.3390/toxins12090537. PubMed DOI PMC
Higaki S., Kitagawa T., Kagoura M., Morohashi M., Yamagishi T. Predominant Staphylococcus aureus isolated from various skin diseases. J. Int. Med Res. 2000;28:187–190. doi: 10.1177/147323000002800404. PubMed DOI
Principi N., Argentiero A., Neglia C., Gramegna A., Esposito S. New antibiotics for the treatment of acute bacterial skin and soft tissue infections in pediatrics. Pharmaceuticals. 2020;13:333. doi: 10.3390/ph13110333. PubMed DOI PMC
Appelbaum P.C. Microbiology of antibiotic resistance in Staphylococcus aureus. Clin. Infect. Dis. 2007;45:S165–S170. doi: 10.1086/519474. PubMed DOI
Gregova G., Kmetova M., Kmet V., Venglovsky J., Feher A. Antibiotic resistance of Escherichia coli isolated from a poultry slaughterhouse. Ann. Agric. Environ. Med. 2012;19:75–77. PubMed
Darwish R.M., Aburjai T.A. Effect of ethnomedicinal plants used in folklore medicine in Jordan as antibiotic resistant in-hibitors on Escherichia coli. BMC Compl. Alternative Med. 2010;10:1–8. doi: 10.1186/1472-6882-10-9. PubMed DOI PMC
Nyakudya T., Tshabalala T., Dangarembizi R., Erlwanger K., Ndhlala A.R. The potential therapeutic value of medicinal plants in the management of metabolic disorders. Molecules. 2020;25:2669. doi: 10.3390/molecules25112669. PubMed DOI PMC
Akinyede K.A., Ekpo O.E., Oguntibeju O.O. Ethnopharmacology, therapeutic properties and nutritional potentials of Car-pobrotus edulis: A comprehensive review. Sci. Pharm. 2020;88:39. doi: 10.3390/scipharm88030039. DOI
Tavares W.R., Barreto M.D.C., Seca A.M.L. Uncharted source of medicinal products: The case of the Hedychium genus. Medicines. 2020;7:23. doi: 10.3390/medicines7050023. PubMed DOI PMC
Altemimi A., Lakhssassi N., Baharlouei A., Watson D.G., Lightfoot D.A. Phytochemicals: Extraction, isolation, and iden-tification of bioactive compounds from plant extracts. Plants. 2017;6:42. doi: 10.3390/plants6040042. PubMed DOI PMC
Kostić A.Ž., Janaćković P., Kolašinac S.M., Stevanović Z.P.D. Balkans’ Asteraceae species as a source of biologically active compounds for the pharmaceutical and food industry. Chem. Biodivers. 2020;17:2000097. doi: 10.1002/cbdv.202000097. PubMed DOI
Bessada S.M., Barreira J.C., Oliveira M.P. Asteraceae species with most prominent bioactivity and their potential applications: A review. Ind. Crop. Prod. 2015;76:604–615. doi: 10.1016/j.indcrop.2015.07.073. DOI
Michel J., Rani N.Z.A., Husain K. A review on the potential use of medicinal plants from Asteraceae and Lamiaceae plant family in cardiovascular diseases. Front. Pharmacol. 2020;11:852. doi: 10.3389/fphar.2020.00852. PubMed DOI PMC
Ross J. Combining Western Herbs and Chinese Medicine: Principles, Practice, and Materia Medica. Greenfields press; Seattle, WA, USA: 2003. pp. 165–182.
Saeidnia S., Gohari A., Mokhber-Dezfuli N., Kiuchi F. A review on phytochemistry and medicinal properties of the genus Achillea. DARU J. Pharm. Sci. 2011;19:173–186. PubMed PMC
Radulovic N., Zlatković B., Palic R., Stojanovic G. Chemotaxonomic significance of the Balkan Achillea volatiles. Nat. Prod. Commun. 2007;2:453–474. doi: 10.1177/1934578X0700200417. DOI
Boskovic Z., Radulovic N., Stojanovic G. Essential oil composition of four Achillea species from the Balkans and its chemo-taxonomic significance. Chem. Nat. Compd. 2005;41:674–678. doi: 10.1007/s10600-006-0009-6. DOI
G.rada Publishing . Pharmacopoea Bohemica MMXVII. 1st ed. G.rada Publishing; Prague, Czech Republic: 2017. p. 4121.
Jovanović O., Radulović N., Palić R., Zlatković B. Root essential oil of Achillea lingulata Waldst. & Kit. (Asteraceae) J. Essent. Oil Res. 2010;22:336–339. doi: 10.1080/10412905.2010.9700340. DOI
Stojanovic G., Hashimoto T., Asakawa Y., Palić R. Chemical composition of the Achillea lingulata extract. Biochem. Syst. Ecol. 2005;33:207–210. doi: 10.1016/j.bse.2004.07.004. DOI
Zhang Q.W., Lin L.G., Ye W.C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018;13:1–26. doi: 10.1186/s13020-018-0177-x. PubMed DOI PMC
Truong D.-H., Nguyen D.H., Ta N.T.A., Bui A.V., Do T.H., Nguyen H.C. Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of Severinia buxifolia. J. Food Qual. 2019;2019:1–9. doi: 10.1155/2019/8178294. DOI
Trifunović S., Vajs V., Tešević V., Djoković D., Milosavljević S. Lignans from the plant species Achillea lingulata. J. Serbian Chem. Soc. 2003;68:277–280. doi: 10.2298/JSC0305277T. DOI
Chalchat J.C., Gorunovic M.S., Petrovic S.D., Zlatkovic V.V. Aromatic plants of Yugoslavia. II. Chemical composition of essential oils of three wild Achillea Species: A. clavenae L., A. collina Becker and A. lingulata W. et K. J. Essent. Oil Res. 2000;12:7–10. doi: 10.1080/10412905.2000.9712028. DOI
Stojanovic G., Palic R., Naskovic T., Dokovic D., Milosavljevic S. Volatile constituents of Achillea lingulata WK. J. Essent. Oil Res. 2001;13:378–379. doi: 10.1080/10412905.2001.9712239. DOI
Kovačević N.N., Ristić M.S., Tasić S.R., Menković N.R., Grubišić D.V., Đoković D.D. Comparative study of essential oil of three Achillea species from Serbia. J. Essent. Oil Res. 2005;17:57–60. doi: 10.1080/10412905.2005.9698830. DOI
Kundakovic T., Fokialakis N., Kovacevic N., Chinou I. Essential oil composition of Achillea lingulata and A. umbellata. Flavour Fragr. J. 2007;22:184–187. doi: 10.1002/ffj.1778. DOI
Popovici M., Vlase L., Oniga I., Tamas M. HPLC analyses on polyphenolic compounds from Achillea species. Farmacia. 2007;3:353–357.
Serdar G., Sökmen M., Demir E., Sökmen A., Bektaş E. Extraction of antioxidative principles of Achillea biserrata M. Bieb. and chromatographic analyses. Int. J. Second. Metab. 2015;2:3–15. doi: 10.21448/ijsm.240706. DOI
Bashi D.S., Mortazavi S.A., Rezaei K., Rajaei A., Karimkhani M.M. Optimization of ultrasound-assisted extraction of phenolic compounds from yarrow (Achillea beibrestinii) by response surface methodology. Food Sci. Biotechnol. 2012;21:1005–1011. doi: 10.1007/s10068-012-0131-0. DOI
Benedec D., Vlase L., Oniga I., Mot A.C., Damian G., Hanganu D., Duma M., Silaghi-Dumitrescu R. Polyphenolic composition, antioxidant and antibacterial activities for two Romanian subspecies of Achillea distans Waldst. et Kit. ex Willd. Molecules. 2013;18:8725–8739. doi: 10.3390/molecules18088725. PubMed DOI PMC
Tuberoso C.I.G., Montoro P., Piacente S., Corona G., Deiana M., Dessì M.A., Pizza C., Cabras P. Flavonoid characterization and antioxidant activity of hydroalcoholic extracts from Achillea ligustica All. J. Pharm. Biomed. Anal. 2009;50:440–448. doi: 10.1016/j.jpba.2009.05.032. PubMed DOI
Karlova K. Accumulation of flavonoid compounds in flowering shoots of Achillea colllina Becker ex. Rchb. Alba during flower development. Hortic. Sci. 2006;33:158–162. doi: 10.17221/3756-HORTSCI. DOI
Lemmens-Gruber R., Marchart E., Rawnduzi P., Engel N., Benedek B., Kopp B. Investigation of the spasmolytic activity of the flavonoid fraction of Achillea millefolium s.l. on isolated Guinea-pig ilea. Arzneimittelforschung. 2006;56:582–588. doi: 10.1055/s-0031-1296755. PubMed DOI
Benedec D., Hanganu D., Oniga I., Filip L., Bischin C., Silaghi-Dumitrescu R., Tiperciuc B., Vlase L. Achillea schurii Flowers: Chemical, antioxidant, and antimicrobial investigations. Molecules. 2016;21:1050. doi: 10.3390/molecules21081050. PubMed DOI PMC
Stojanović G., Radulović N., Hashimoto T., Palić R. In vitro antimicrobial activity of extracts of four Achillea species: The composition of Achillea clavennae L. (Asteraceae) extract. J. Ethnopharmacol. 2005;101:185–190. doi: 10.1016/j.jep.2005.04.026. PubMed DOI
Candan F., Unlu M., Tepe B., Daferera D., Polissiou M., Sökmen A., Akpulat H. Antioxidant and antimicrobial activity of the essential oil and methanol extracts of Achillea millefolium subsp. millefolium Afan. (Asteraceae). J. Ethnopharmacol. 2003;87:215–220. doi: 10.1016/S0378-8741(03)00149-1. PubMed DOI
Mudzengi C.P., Murwira A., Tivapasi M., Murungweni C., Burumu J.V., Halimani T. Antibacterial activity of aqueous and methanol extracts of selected species used in livestock health management. Pharm. Biol. 2017;55:1054–1060. doi: 10.1080/13880209.2017.1287744. PubMed DOI PMC
Gonelimali F.D., Lin J., Miao W., Xuan J., Charles F., Chen M., Hatab S.R. Antimicrobial properties and mechanism of action of some plant extracts against food pathogens and spoilage microorganisms. Front. Microbiol. 2018;9:1639. doi: 10.3389/fmicb.2018.01639. PubMed DOI PMC
Maz M., Mirdeilami S.Z., Pessarakli M. Essential oil composition and antibacterial activity of Achillea millefolium L. from different regions in North east of Iran. J. Med. Plant Res. 2013;7:1063–1069. doi: 10.5897/JMPR12.961. DOI
Bouarab-Chibane L., Forquet V., Lantéri P., Clément Y., Léonard-Akkari L., Oulahal N., Degraeve P., Bordes C. Anti-bacterial properties of polyphenols: Characterization and QSAR (Quantitative structure–activity relationship) models. Front. Microbiol. 2019;10:829. doi: 10.3389/fmicb.2019.00829. PubMed DOI PMC
Ikigai H., Nakae T., Hara Y., Shimamura T. Bactericidal catechins damage the lipid bilayer. Biochim. et Biophys. Acta (BBA) Biomembr. 1993;1147:132–136. doi: 10.1016/0005-2736(93)90323-R. PubMed DOI
Taguri T., Tanaka T., Kouno I. Antibacterial spectrum of plant polyphenols and extracts depending upon hydroxyphenyl structure. Biol. Pharm. Bull. 2006;29:2226–2235. doi: 10.1248/bpb.29.2226. PubMed DOI
Cushnie T.T., Lamb A.J. Recent advances in understanding the antibacterial properties of flavonoids. Int. J. Antimicrob. Agents. 2011;38:99–107. doi: 10.1016/j.ijantimicag.2011.02.014. PubMed DOI
Borges A., Ferreira C., Saavedra M.J., Simões M. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb. Drug Resist. 2013;19:256–265. doi: 10.1089/mdr.2012.0244. PubMed DOI
Tsuchiya H., Sato M., Miyazaki T., Fujiwara S., Tanigaki S., Ohyama M., Tanaka T., Iinuma M. Comparative study on the antibacterial activity of phytochemical flavanones against methicillin-resistant Staphylococcus aureus. J. Ethnopharmacol. 1996;50:27–34. doi: 10.1016/0378-8741(96)85514-0. PubMed DOI
Barchan A., Bakkali M., Arakrak A., Pagán R., Laglaoui A. The effects of solvents polarity on the phenolic contents and antioxidant activity of three Mentha species extracts. Int. J. Curr. Microbiol. Appl. Sci. 2014;3:399–412.
Anwar F., Przybylski R. Effect of solvents extraction on total phenolics and antioxidant activity of extracts from flaxseed (Linum usitatissimum L.) Acta Sci. Pol. Technol. Aliment. 2012;11:293–302. PubMed
Lanfer-Marquez U.M., Barros R.M., Sinnecker P. Antioxidant activity of chlorophylls and their derivatives. Food Res. Int. 2005;38:885–891. doi: 10.1016/j.foodres.2005.02.012. DOI
Gaweł-Bęben K., Strzępek-Gomółka M., Czop M., Sakipova Z., Głowniak K., Kukula-Koch W. Achillea millefolium L. and Achillea biebersteinii Afan. hydroglycolic extracts–bioactive ingredients for cosmetic use. Molecules. 2020;25:3368. doi: 10.3390/molecules25153368. PubMed DOI PMC
Bozin B., Mimica-Dukic N., Bogavac M., Suvajdzic L., Simin N., Samojlik I., Couladis M. Chemical composition, antiox-idant and antibacterial properties of Achillea collina Becker ex Heimerl s.l. and A. pannonica scheele essential oils. Molecules. 2008;13:2058–2068. doi: 10.3390/molecules13092058. PubMed DOI PMC
Gharibi S., Tabatabaei B.E.S., Saeidi G. Comparison of essential oil composition, flavonoid content and antioxidant activity in eight Achillea species. J. Essent. Oil Bear. Plants. 2015;18:1382–1394. doi: 10.1080/0972060X.2014.981600. DOI
Kazemi M. Chemical composition and antimicrobial, antioxidant activities and anti-inflammatory potential of Achillea mille-folium L., Anethum graveolens L., and Carum copticum L. essential oils. J. Herb. Med. 2015;5:217–222. doi: 10.1016/j.hermed.2015.09.001. DOI
Milutinovic M., Radovanovic N., Corovic M., Siler-Marinkovic S., Rajilic-Stojanovic M., Dimitrijevic-Brankovic S. Opti-misation of microwave-assisted extraction parameters for antioxidants from waste Achillea millefolium dust. Ind. Crop Prod. 2015;77:333–341. doi: 10.1016/j.indcrop.2015.09.007. DOI
Venditti A., Maggi F., Vittori S., Papa F., Serrilli A.M., Di Cecco M., Ciaschetti G., Mandrone M., Poli F., Bianco A. Antioxidant andα-glucosidase inhibitory activities of Achillea tenorii. Pharm. Biol. 2015;53:1505–1510. doi: 10.3109/13880209.2014.991833. PubMed DOI
Meda A., Lamien C.E., Romito M., Millogo J., Nacoulma O.G. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem. 2005;91:571–577. doi: 10.1016/j.foodchem.2004.10.006. DOI
Valgas C., De Souza S.M., Smania E.F.A., Smania A., Jr. Screening methods to determine antibacterial activity of natural products. Braz. J. Microbiol. 2007;38:369–380. doi: 10.1590/S1517-83822007000200034. DOI
Magaldi S., Mata-Essayag S., de Capriles C.H., Perez C., Colella M., Olaizola C., Ontiveros Y. Well diffusion for antifungal susceptibility testing. Int. J. Infect. Dis. 2004;8:39–45. doi: 10.1016/j.ijid.2003.03.002. PubMed DOI
McFarland J. The nephelometer: An instrument for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. JAMA. 1907;XLIX:1176–1178. doi: 10.1001/jama.1907.25320140022001f. DOI