• This record comes from PubMed

Polymorphisms within Autophagy-Related Genes Influence the Risk of Developing Colorectal Cancer: A Meta-Analysis of Four Large Cohorts

. 2021 Mar 12 ; 13 (6) : . [epub] 20210312

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
PI12/02688 Instituto de Salud Carlos III
PI17/02256 Instituto de Salud Carlos III
829675 The Austrian Research Promotion Agency (FFG) BRIDGE grant
N/A The Herzfelder'sche Familienstiftung
Q28/1.LF PROGRES
006 UNCE/MED
CA17118 COST Action
BT/RLF/Re-entry/38/2017 Ramalingaswami Re-Retry Faculty Fellowship
2017SGR723 The Agency for Management of University and Research Grants (AGAUR) of the Catalan Government
PI14-00613 Instituto de Salud Carlos III
PI17-00092 Instituto de Salud Carlos III
GCTRA18022MORE The Spanish Association Against Cancer (AECC) Scientific Foundation

The role of genetic variation in autophagy-related genes in modulating autophagy and cancer is poorly understood. Here, we comprehensively investigated the association of autophagy-related variants with colorectal cancer (CRC) risk and provide new insights about the molecular mechanisms underlying the associations. After meta-analysis of the genome-wide association study (GWAS) data from four independent European cohorts (8006 CRC cases and 7070 controls), two loci, DAPK2 (p = 2.19 × 10-5) and ATG5 (p = 6.28 × 10-4) were associated with the risk of CRC. Mechanistically, the DAPK2rs11631973G allele was associated with IL1 β levels after the stimulation of peripheral blood mononuclear cells (PBMCs) with Staphylococcus aureus (p = 0.002), CD24 + CD38 + CD27 + IgM + B cell levels in blood (p = 0.0038) and serum levels of en-RAGE (p = 0.0068). ATG5rs546456T allele was associated with TNF α and IL1 β levels after the stimulation of PBMCs with LPS (p = 0.0088 and p = 0.0076, respectively), CD14+CD16- cell levels in blood (p = 0.0068) and serum levels of CCL19 and cortisol (p = 0.0052 and p = 0.0074, respectively). Interestingly, no association with autophagy flux was observed. These results suggested an effect of the DAPK2 and ATG5 loci in the pathogenesis of CRC, likely through the modulation of host immune responses.

Area of Genomic Medicine GENYO Centre for Genomics and Oncological Research Pfizer University of Granada Andalusian Regional Government 18016 Granada Spain

Biomedical Centre Faculty of Medicine in Pilsen Charles University Prague 323 00 Pilsen Czech Republic

Catalan Institute of Oncology Bellvitge Biomedical Research Institute and University of Barcelona 08908 Barcelona Spain

Centre for Individualised Infection Medicine 30625 Hannover Germany

Consortium for Biomedical Research in Epidemiology and Public Health 28029 Madrid Spain

Department for Immunology and Metabolism Life and Medical Sciences Institute University of Bonn 53115 Bonn Germany

Department of Internal Medicine and Radboud Center for Infectious Diseases Radboud University Nijmegen Medical Center 6525 GA Nijmegen The Netherlands

Department of Medical Oncology Complejo Hospitalario de Jaén 23007 Jaén Spain

Department of Medicine 1 Institute of Cancer Research Medical University of Vienna Borschkegasse 8a A 1090 Vienna Austria

Department of Medicine University of Granada 18016 Granada Spain

Department of Molecular Biology of Cancer Institute of Experimental Medicine Academy of Sciences of the Czech Republic 142 00 Prague Czech Republic

Division of Cancer Epidemiology German Cancer Research Center 69120 Heidelberg Germany

Division of Cancer Epidemiology German Cancer Research Center Im Neuenheimer Feld 280 69120 Heidelberg Germany

Division of Clinical Epidemiology and Aging Research German Cancer Research Center Im Neuenheimer Feld 280 69120 Heidelberg Germany

Division of Molecular Genetic Epidemiology German Cancer Research Center 69120 Heidelberg Germany

Division of Pediatric Neurooncology German Cancer Research Center 69120 Heidelberg Germany

Division of Preventive Oncology German Cancer Research Center 69120 Heidelberg Germany

Faculty of Medicine and Biomedical Center in Pilsen Charles University Prague 30605 Pilsen Czech Republic

Genetic Tumour Epidemiology Group University Medical Center Hamburg Eppendorf University Cancer Center 20246 Hamburg Germany

Genomic Oncology Area GENYO Centre for Genomics and Oncological Research Pfizer University of Granada Andalusian Regional Government 18016 Granada Spain

German Cancer Consortium 69120 Heidelberg Germany

Hematology Department Virgen de las Nieves University Hospital 18012 Granada Spain

Hopp Children's Cancer Center 69120 Heidelberg Germany

ICVS 3B's PT Government Associate Laboratory Braga Guimarães Portugal

Institute of Bioinformatics International Technology Park Bangalore Karnataka 560066 India

Institute of Biology and Medical Genetics 1st Medical Faculty Charles University 12800 Prague Czech Republic

Instituto de Biomedicina Universidad de León 24071 León Spain

Instituto de Investigación Biosanataria IBs Granada 18012 Granada Spain

Life and Health Sciences Research Institute School of Medicine University of Minho 4710 057 Braga Portugal

Manipal Academy of Higher Education Manipal Karnataka 576104 India

Network Aging Research University of Heidelberg 69115 Heidelberg Germany

See more in PubMed

Siegel R., Naishadham D., Jemal A. Cancer statistics, 2013. CA Cancer J. Clin. 2013;63:11–30. doi: 10.3322/caac.21166. PubMed DOI

Punt C.J., Tol J. More is less—combining targeted therapies in metastatic colorectal cancer. Nat. Rev. Clin. Oncol. 2009;6:731–733. doi: 10.1038/nrclinonc.2009.168. PubMed DOI

Huyghe J.R., Bien S.A., Harrison T.A., Kang H.M., Chen S., Schmit S.L., Conti D.V., Qu C., Jeon J., Edlund C.K., et al. Discovery of common and rare genetic risk variants for colorectal cancer. Nat. Genet. 2019;51:76–87. doi: 10.1038/s41588-018-0286-6. PubMed DOI PMC

Song M., Chan A.T., Sun J. Influence of the Gut Microbiome, Diet, and Environment on Risk of Colorectal Cancer. Gastroenterology. 2020;158:322–340. doi: 10.1053/j.gastro.2019.06.048. PubMed DOI PMC

Burada F., Nicoli E.R., Ciurea M.E., Uscatu D.C., Ioana M., Gheonea D.I. Autophagy in colorectal cancer: An important switch from physiology to pathology. World J. Gastrointest. Oncol. 2015;7:271–284. doi: 10.4251/wjgo.v7.i11.271. PubMed DOI PMC

Degenhardt K., Mathew R., Beaudoin B., Bray K., Anderson D., Chen G., Mukherjee C., Shi Y., Gelinas C., Fan Y., et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell. 2006;10:51–64. doi: 10.1016/j.ccr.2006.06.001. PubMed DOI PMC

Park J.M., Huang S., Wu T.T., Foster N.R., Sinicrope F.A. Prognostic impact of Beclin 1, p62/sequestosome 1 and LC3 protein expression in colon carcinomas from patients receiving 5-fluorouracil as adjuvant chemotherapy. Cancer Biol. Ther. 2013;14:100–107. doi: 10.4161/cbt.22954. PubMed DOI PMC

Coppola D., Khalil F., Eschrich S.A., Boulware D., Yeatman T., Wang H.G. Down-regulation of Bax-interacting factor-1 in colorectal adenocarcinoma. Cancer. 2008;113:2665–2670. doi: 10.1002/cncr.23892. PubMed DOI PMC

Yang H.Z., Ma Y., Zhou Y., Xu L.M., Chen X.J., Ding W.B., Zou H.B. Autophagy contributes to the enrichment and survival of colorectal cancer stem cells under oxaliplatin treatment. Cancer Lett. 2015;361:128–136. doi: 10.1016/j.canlet.2015.02.045. PubMed DOI

Patel S., Hurez V., Nawrocki S.T., Goros M., Michalek J., Sarantopoulos J., Curiel T., Mahalingam D. Vorinostat and hydroxychloroquine improve immunity and inhibit autophagy in metastatic colorectal cancer. Oncotarget. 2016 doi: 10.18632/oncotarget.10824. PubMed DOI PMC

Galluzzi L., Pietrocola F., Bravo-San Pedro J.M., Amaravadi R.K., Baehrecke E.H., Cecconi F., Codogno P., Debnath J., Gewirtz D.A., Karantza V., et al. Autophagy in malignant transformation and cancer progression. EMBO J. 2015;34:856–880. doi: 10.15252/embj.201490784. PubMed DOI PMC

Matsuzawa-Ishimoto Y., Hwang S., Cadwell K. Autophagy and Inflammation. Annu. Rev. Immunol. 2018;36:73–101. doi: 10.1146/annurev-immunol-042617-053253. PubMed DOI

Deretic V., Saitoh T., Akira S. Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol. 2013;13:722–737. doi: 10.1038/nri3532. PubMed DOI PMC

Ngabire D., Kim G.D. Autophagy and Inflammatory Response in the Tumor Microenvironment. Int. J. Mol. Sci. 2017;18:2016. doi: 10.3390/ijms18092016. PubMed DOI PMC

Nicoli E.R., Dumitrescu T., Uscatu C.D., Popescu F.D., Streata I., Sosoi S.S., Ivanov P., Dumitrescu A., Barbalan A., Lungulescu D., et al. Determination of autophagy gene ATG16L1 polymorphism in human colorectal cancer. Rom. J. Morphol. Embryol. Rev. Roum. Morphol. Embryol. 2014;55:57–62. PubMed

Zeng C., Matsuda K., Jia W.H., Chang J., Kweon S.S., Xiang Y.B., Shin A., Jee S.H., Kim D.H., Zhang B., et al. Identification of Susceptibility Loci and Genes for Colorectal Cancer Risk. Gastroenterology. 2016;150:1633–1645. doi: 10.1053/j.gastro.2016.02.076. PubMed DOI PMC

Grimm W.A., Messer J.S., Murphy S.F., Nero T., Lodolce J.P., Weber C.R., Logsdon M.F., Bartulis S., Sylvester B.E., Springer A., et al. The Thr300Ala variant in ATG16L1 is associated with improved survival in human colorectal cancer and enhanced production of type I interferon. Gut. 2016;65:456–464. doi: 10.1136/gutjnl-2014-308735. PubMed DOI PMC

Ma Y., Galluzzi L., Zitvogel L., Kroemer G. Autophagy and cellular immune responses. Immunity. 2013;39:211–227. doi: 10.1016/j.immuni.2013.07.017. PubMed DOI

Fernandez-Rozadilla C., Cazier J.B., Tomlinson I.P., Carvajal-Carmona L.G., Palles C., Lamas M.J., Baiget M., Lopez-Fernandez L.A., Brea-Fernandez A., Abuli A., et al. A colorectal cancer genome-wide association study in a Spanish cohort identifies two variants associated with colorectal cancer risk at 1p33 and 8p12. BMC Genom. 2013;14:55. doi: 10.1186/1471-2164-14-55. PubMed DOI PMC

Guo F., Weigl K., Carr P.R., Heisser T., Jansen L., Knebel P., Chang-Claude J., Hoffmeister M., Brenner H. Use of Polygenic Risk Scores to Select Screening Intervals After Negative Findings From Colonoscopy. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2020 doi: 10.1016/j.cgh.2020.04.077. PubMed DOI

Schmit S.L., Edlund C.K., Schumacher F.R., Gong J., Harrison T.A., Huyghe J.R., Qu C., Melas M., Van Den Berg D.J., Wang H., et al. Novel Common Genetic Susceptibility Loci for Colorectal Cancer. J. Natl. Cancer Inst. 2019;111:146–157. doi: 10.1093/jnci/djy099. PubMed DOI PMC

Hofer P., Hagmann M., Brezina S., Dolejsi E., Mach K., Leeb G., Baierl A., Buch S., Sutterluty-Fall H., Karner-Hanusch J., et al. Bayesian and frequentist analysis of an Austrian genome-wide association study of colorectal cancer and advanced adenomas. Oncotarget. 2017;8:98623–98634. doi: 10.18632/oncotarget.21697. PubMed DOI PMC

Peters U., Jiao S., Schumacher F.R., Hutter C.M., Aragaki A.K., Baron J.A., Berndt S.I., Bezieau S., Brenner H., Butterbach K., et al. Identification of Genetic Susceptibility Loci for Colorectal Tumors in a Genome-Wide Meta-analysis. Gastroenterology. 2013;144:799–807.e724. doi: 10.1053/j.gastro.2012.12.020. PubMed DOI PMC

Schumacher F.R., Schmit S.L., Jiao S., Edlund C.K., Wang H., Zhang B., Hsu L., Huang S.C., Fischer C.P., Harju J.F., et al. Genome-wide association study of colorectal cancer identifies six new susceptibility loci. Nat. Commun. 2015;6:7138. doi: 10.1038/ncomms8138. PubMed DOI PMC

Weigl K., Chang-Claude J., Knebel P., Hsu L., Hoffmeister M., Brenner H. Strongly enhanced colorectal cancer risk stratification by combining family history and genetic risk score. Clin. Epidemiol. 2018;10:143–152. doi: 10.2147/CLEP.S145636. PubMed DOI PMC

Law P.J., Timofeeva M., Fernandez-Rozadilla C., Broderick P., Studd J., Fernandez-Tajes J., Farrington S., Svinti V., Palles C., Orlando G., et al. Association analyses identify 31 new risk loci for colorectal cancer susceptibility. Nat. Commun. 2019;10:2154. doi: 10.1038/s41467-019-09775-w. PubMed DOI PMC

Sanchez-Maldonado J.M., Martinez-Bueno M., Canhao H., Ter Horst R., Munoz-Pena S., Moniz-Diez A., Rodriguez-Ramos A., Escudero A., Sorensen S.B., Hetland M.L., et al. NFKB2 polymorphisms associate with the risk of developing rheumatoid arthritis and response to TNF inhibitors: Results from the REPAIR consortium. Sci. Rep. 2020;10:4316. doi: 10.1038/s41598-020-61331-5. PubMed DOI PMC

Li Y., Oosting M., Smeekens S.P., Jaeger M., Aguirre-Gamboa R., Le K.T.T., Deelen P., Ricano-Ponce I., Schoffelen T., Jansen A.F.M., et al. A Functional Genomics Approach to Understand Variation in Cytokine Production in Humans. Cell. 2016;167:1099–1110.e1014. doi: 10.1016/j.cell.2016.10.017. PubMed DOI

Aguirre-Gamboa R., Joosten I., Urbano P.C.M., van der Molen R.G., van Rijssen E., van Cranenbroek B., Oosting M., Smeekens S., Jaeger M., Zorro M., et al. Differential Effects of Environmental and Genetic Factors on T and B Cell Immune Traits. Cell Rep. 2016;17:2474–2487. doi: 10.1016/j.celrep.2016.10.053. PubMed DOI PMC

Orru V., Steri M., Sole G., Sidore C., Virdis F., Dei M., Lai S., Zoledziewska M., Busonero F., Mulas A., et al. Genetic variants regulating immune cell levels in health and disease. Cell. 2013;155:242–256. doi: 10.1016/j.cell.2013.08.041. PubMed DOI PMC

Westra H.J., Peters M.J., Esko T., Yaghootkar H., Schurmann C., Kettunen J., Christiansen M.W., Fairfax B.P., Schramm K., Powell J.E., et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 2013;45:1238–1243. doi: 10.1038/ng.2756. PubMed DOI PMC

Ber Y., Shiloh R., Gilad Y., Degani N., Bialik S., Kimchi A. DAPK2 is a novel regulator of mTORC1 activity and autophagy. Cell Death Differ. 2015;22:465–475. doi: 10.1038/cdd.2014.177. PubMed DOI PMC

Geering B., Stoeckle C., Rozman S., Oberson K., Benarafa C., Simon H.U. DAPK2 positively regulates motility of neutrophils and eosinophils in response to intermediary chemoattractants. J. Leukoc. Biol. 2014;95:293–303. doi: 10.1189/jlb.0813462. PubMed DOI

Geering B., Zokouri Z., Hurlemann S., Gerrits B., Auslander D., Britschgi A., Tschan M.P., Simon H.U., Fussenegger M. Identification of Novel Death-Associated Protein Kinase 2 Interaction Partners by Proteomic Screening Coupled with Bimolecular Fluorescence Complementation. Mol. Cell. Biol. 2016;36:132–143. doi: 10.1128/MCB.00515-15. PubMed DOI PMC

Rizzi M., Tschan M.P., Britschgi C., Britschgi A., Hugli B., Grob T.J., Leupin N., Mueller B.U., Simon H.U., Ziemiecki A., et al. The death-associated protein kinase 2 is up-regulated during normal myeloid differentiation and enhances neutrophil maturation in myeloid leukemic cells. J. Leukoc. Biol. 2007;81:1599–1608. doi: 10.1189/jlb.0606400. PubMed DOI

Humbert M., Federzoni E.A., Britschgi A., Schlafli A.M., Valk P.J., Kaufmann T., Haferlach T., Behre G., Simon H.U., Torbett B.E., et al. The tumor suppressor gene DAPK2 is induced by the myeloid transcription factors PU.1 and C/EBPalpha during granulocytic differentiation but repressed by PML-RARalpha in APL. J. Leukoc. Biol. 2014;95:83–93. doi: 10.1189/jlb.1112608. PubMed DOI PMC

Zhang J., Liu L., Sun Y., Xiang J., Zhou D., Wang L., Xu H., Yang X., Du N., Zhang M., et al. MicroRNA-520g promotes epithelial ovarian cancer progression and chemoresistance via DAPK2 repression. Oncotarget. 2016;7:26516–26534. doi: 10.18632/oncotarget.8530. PubMed DOI PMC

Furuta G.T., Nieuwenhuis E.E., Karhausen J., Gleich G., Blumberg R.S., Lee J.J., Ackerman S.J. Eosinophils alter colonic epithelial barrier function: Role for major basic protein. Am. J. Physiol. Gastrointest. Liver Physiol. 2005;289:G890–G897. doi: 10.1152/ajpgi.00015.2005. PubMed DOI

McLoed A.G., Sherrill T.P., Cheng D.S., Han W., Saxon J.A., Gleaves L.A., Wu P., Polosukhin V.V., Karin M., Yull F.E., et al. Neutrophil-Derived IL-1beta Impairs the Efficacy of NF-kappaB Inhibitors against Lung Cancer. Cell Rep. 2016;16:120–132. doi: 10.1016/j.celrep.2016.05.085. PubMed DOI PMC

Butt J., Epplein M. Helicobacter pylori and colorectal cancer-A bacterium going abroad? PLoS Pathog. 2019;15:e1007861. doi: 10.1371/journal.ppat.1007861. PubMed DOI PMC

Correa P., Houghton J. Carcinogenesis of Helicobacter pylori. Gastroenterology. 2007;133:659–672. doi: 10.1053/j.gastro.2007.06.026. PubMed DOI

Shimabukuro-Vornhagen A., Schlosser H.A., Gryschok L., Malcher J., Wennhold K., Garcia-Marquez M., Herbold T., Neuhaus L.S., Becker H.J., Fiedler A., et al. Characterization of tumor-associated B-cell subsets in patients with colorectal cancer. Oncotarget. 2014;5:4651–4664. doi: 10.18632/oncotarget.1701. PubMed DOI PMC

Wang L., Wang Y., Lu Y., Zhang Q., Qu X. Heterozygous deletion of ATG5 in Apc(Min/+) mice promotes intestinal adenoma growth and enhances the antitumor efficacy of interferon-gamma. Cancer Biol. Ther. 2015;16:383–391. doi: 10.1080/15384047.2014.1002331. PubMed DOI PMC

Lauzier A., Normandeau-Guimond J., Vaillancourt-Lavigueur V., Boivin V., Charbonneau M., Rivard N., Scott M.S., Dubois C.M., Jean S. Colorectal cancer cells respond differentially to autophagy inhibition in vivo. Sci. Rep. 2019;9:11316. doi: 10.1038/s41598-019-47659-7. PubMed DOI PMC

Wang L., Qi J., Yu J., Chen H., Zou Z., Lin X., Guo L. Overexpression of Rictor protein in colorectal cancer is correlated with tumor progression and prognosis. Oncol. Lett. 2017;14:6198–6202. doi: 10.3892/ol.2017.6936. PubMed DOI PMC

Iula L., Keitelman I.A., Sabbione F., Fuentes F., Guzman M., Galletti J.G., Gerber P.P., Ostrowski M., Geffner J.R., Jancic C.C., et al. Autophagy Mediates Interleukin-1beta Secretion in Human Neutrophils. Front. Immunol. 2018;9:269. doi: 10.3389/fimmu.2018.00269. PubMed DOI PMC

Xu Z., Zhu C., Chen C., Zong Y., Feng H., Liu D., Feng W., Zhao J., Lu A. CCL19 suppresses angiogenesis through promoting miR-206 and inhibiting Met/ERK/Elk-1/HIF-1alpha/VEGF-A pathway in colorectal cancer. Cell Death Dis. 2018;9:974. doi: 10.1038/s41419-018-1010-2. PubMed DOI PMC

Saitoh T., Akira S. Regulation of inflammasomes by autophagy. J. Allergy Clin. Immunol. 2016;138:28–36. doi: 10.1016/j.jaci.2016.05.009. PubMed DOI

Pliyev B.K., Menshikov M. Differential effects of the autophagy inhibitors 3-methyladenine and chloroquine on spontaneous and TNF-alpha-induced neutrophil apoptosis. Apoptosis. 2012;17:1050–1065. doi: 10.1007/s10495-012-0738-x. PubMed DOI

Zhang X., Zhang Y., He Z., Yin K., Li B., Zhang L., Xu Z. Chronic stress promotes gastric cancer progression and metastasis: An essential role for ADRB2. Cell Death Dis. 2019;10:788. doi: 10.1038/s41419-019-2030-2. PubMed DOI PMC

Moreno-Smith M., Lutgendorf S.K., Sood A.K. Impact of stress on cancer metastasis. Future Oncol. 2010;6:1863–1881. doi: 10.2217/fon.10.142. PubMed DOI PMC

Swertz M.A., Dijkstra M., Adamusiak T., van der Velde J.K., Kanterakis A., Roos E.T., Lops J., Thorisson G.A., Arends D., Byelas G., et al. The MOLGENIS toolkit: Rapid prototyping of biosoftware at the push of a button. BMC Bioinform. 2010;11(Suppl. 12):S12. doi: 10.1186/1471-2105-11-S12-S12. PubMed DOI PMC

Wilkinson M.D., Dumontier M., Aalbersberg I.J., Appleton G., Axton M., Baak A., Blomberg N., Boiten J.W., da Santos L.B.S., Bourne P.E., et al. Addendum: The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data. 2019;6:6. doi: 10.1038/s41597-019-0009-6. PubMed DOI PMC

Wilkinson M.D., Dumontier M., Aalbersberg I.J., Appleton G., Axton M., Baak A., Blomberg N., Boiten J.W., da Santos L.B.S., Bourne P.E., et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data. 2016;3:160018. doi: 10.1038/sdata.2016.18. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...