Polymorphisms within Autophagy-Related Genes Influence the Risk of Developing Colorectal Cancer: A Meta-Analysis of Four Large Cohorts
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
PI12/02688
Instituto de Salud Carlos III
PI17/02256
Instituto de Salud Carlos III
829675
The Austrian Research Promotion Agency (FFG) BRIDGE grant
N/A
The Herzfelder'sche Familienstiftung
Q28/1.LF
PROGRES
006
UNCE/MED
CA17118
COST Action
BT/RLF/Re-entry/38/2017
Ramalingaswami Re-Retry Faculty Fellowship
2017SGR723
The Agency for Management of University and Research Grants (AGAUR) of the Catalan Government
PI14-00613
Instituto de Salud Carlos III
PI17-00092
Instituto de Salud Carlos III
GCTRA18022MORE
The Spanish Association Against Cancer (AECC) Scientific Foundation
PubMed
33809172
PubMed Central
PMC7998818
DOI
10.3390/cancers13061258
PII: cancers13061258
Knihovny.cz E-resources
- Keywords
- autophagy, colorectal cancer, genetic variants, susceptibility,
- Publication type
- Journal Article MeSH
The role of genetic variation in autophagy-related genes in modulating autophagy and cancer is poorly understood. Here, we comprehensively investigated the association of autophagy-related variants with colorectal cancer (CRC) risk and provide new insights about the molecular mechanisms underlying the associations. After meta-analysis of the genome-wide association study (GWAS) data from four independent European cohorts (8006 CRC cases and 7070 controls), two loci, DAPK2 (p = 2.19 × 10-5) and ATG5 (p = 6.28 × 10-4) were associated with the risk of CRC. Mechanistically, the DAPK2rs11631973G allele was associated with IL1 β levels after the stimulation of peripheral blood mononuclear cells (PBMCs) with Staphylococcus aureus (p = 0.002), CD24 + CD38 + CD27 + IgM + B cell levels in blood (p = 0.0038) and serum levels of en-RAGE (p = 0.0068). ATG5rs546456T allele was associated with TNF α and IL1 β levels after the stimulation of PBMCs with LPS (p = 0.0088 and p = 0.0076, respectively), CD14+CD16- cell levels in blood (p = 0.0068) and serum levels of CCL19 and cortisol (p = 0.0052 and p = 0.0074, respectively). Interestingly, no association with autophagy flux was observed. These results suggested an effect of the DAPK2 and ATG5 loci in the pathogenesis of CRC, likely through the modulation of host immune responses.
Centre for Individualised Infection Medicine 30625 Hannover Germany
Consortium for Biomedical Research in Epidemiology and Public Health 28029 Madrid Spain
Department of Medical Oncology Complejo Hospitalario de Jaén 23007 Jaén Spain
Department of Medicine University of Granada 18016 Granada Spain
Division of Cancer Epidemiology German Cancer Research Center 69120 Heidelberg Germany
Division of Molecular Genetic Epidemiology German Cancer Research Center 69120 Heidelberg Germany
Division of Pediatric Neurooncology German Cancer Research Center 69120 Heidelberg Germany
Division of Preventive Oncology German Cancer Research Center 69120 Heidelberg Germany
German Cancer Consortium 69120 Heidelberg Germany
Hematology Department Virgen de las Nieves University Hospital 18012 Granada Spain
Hopp Children's Cancer Center 69120 Heidelberg Germany
ICVS 3B's PT Government Associate Laboratory Braga Guimarães Portugal
Institute of Bioinformatics International Technology Park Bangalore Karnataka 560066 India
Instituto de Biomedicina Universidad de León 24071 León Spain
Instituto de Investigación Biosanataria IBs Granada 18012 Granada Spain
Manipal Academy of Higher Education Manipal Karnataka 576104 India
Network Aging Research University of Heidelberg 69115 Heidelberg Germany
See more in PubMed
Siegel R., Naishadham D., Jemal A. Cancer statistics, 2013. CA Cancer J. Clin. 2013;63:11–30. doi: 10.3322/caac.21166. PubMed DOI
Punt C.J., Tol J. More is less—combining targeted therapies in metastatic colorectal cancer. Nat. Rev. Clin. Oncol. 2009;6:731–733. doi: 10.1038/nrclinonc.2009.168. PubMed DOI
Huyghe J.R., Bien S.A., Harrison T.A., Kang H.M., Chen S., Schmit S.L., Conti D.V., Qu C., Jeon J., Edlund C.K., et al. Discovery of common and rare genetic risk variants for colorectal cancer. Nat. Genet. 2019;51:76–87. doi: 10.1038/s41588-018-0286-6. PubMed DOI PMC
Song M., Chan A.T., Sun J. Influence of the Gut Microbiome, Diet, and Environment on Risk of Colorectal Cancer. Gastroenterology. 2020;158:322–340. doi: 10.1053/j.gastro.2019.06.048. PubMed DOI PMC
Burada F., Nicoli E.R., Ciurea M.E., Uscatu D.C., Ioana M., Gheonea D.I. Autophagy in colorectal cancer: An important switch from physiology to pathology. World J. Gastrointest. Oncol. 2015;7:271–284. doi: 10.4251/wjgo.v7.i11.271. PubMed DOI PMC
Degenhardt K., Mathew R., Beaudoin B., Bray K., Anderson D., Chen G., Mukherjee C., Shi Y., Gelinas C., Fan Y., et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell. 2006;10:51–64. doi: 10.1016/j.ccr.2006.06.001. PubMed DOI PMC
Park J.M., Huang S., Wu T.T., Foster N.R., Sinicrope F.A. Prognostic impact of Beclin 1, p62/sequestosome 1 and LC3 protein expression in colon carcinomas from patients receiving 5-fluorouracil as adjuvant chemotherapy. Cancer Biol. Ther. 2013;14:100–107. doi: 10.4161/cbt.22954. PubMed DOI PMC
Coppola D., Khalil F., Eschrich S.A., Boulware D., Yeatman T., Wang H.G. Down-regulation of Bax-interacting factor-1 in colorectal adenocarcinoma. Cancer. 2008;113:2665–2670. doi: 10.1002/cncr.23892. PubMed DOI PMC
Yang H.Z., Ma Y., Zhou Y., Xu L.M., Chen X.J., Ding W.B., Zou H.B. Autophagy contributes to the enrichment and survival of colorectal cancer stem cells under oxaliplatin treatment. Cancer Lett. 2015;361:128–136. doi: 10.1016/j.canlet.2015.02.045. PubMed DOI
Patel S., Hurez V., Nawrocki S.T., Goros M., Michalek J., Sarantopoulos J., Curiel T., Mahalingam D. Vorinostat and hydroxychloroquine improve immunity and inhibit autophagy in metastatic colorectal cancer. Oncotarget. 2016 doi: 10.18632/oncotarget.10824. PubMed DOI PMC
Galluzzi L., Pietrocola F., Bravo-San Pedro J.M., Amaravadi R.K., Baehrecke E.H., Cecconi F., Codogno P., Debnath J., Gewirtz D.A., Karantza V., et al. Autophagy in malignant transformation and cancer progression. EMBO J. 2015;34:856–880. doi: 10.15252/embj.201490784. PubMed DOI PMC
Matsuzawa-Ishimoto Y., Hwang S., Cadwell K. Autophagy and Inflammation. Annu. Rev. Immunol. 2018;36:73–101. doi: 10.1146/annurev-immunol-042617-053253. PubMed DOI
Deretic V., Saitoh T., Akira S. Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol. 2013;13:722–737. doi: 10.1038/nri3532. PubMed DOI PMC
Ngabire D., Kim G.D. Autophagy and Inflammatory Response in the Tumor Microenvironment. Int. J. Mol. Sci. 2017;18:2016. doi: 10.3390/ijms18092016. PubMed DOI PMC
Nicoli E.R., Dumitrescu T., Uscatu C.D., Popescu F.D., Streata I., Sosoi S.S., Ivanov P., Dumitrescu A., Barbalan A., Lungulescu D., et al. Determination of autophagy gene ATG16L1 polymorphism in human colorectal cancer. Rom. J. Morphol. Embryol. Rev. Roum. Morphol. Embryol. 2014;55:57–62. PubMed
Zeng C., Matsuda K., Jia W.H., Chang J., Kweon S.S., Xiang Y.B., Shin A., Jee S.H., Kim D.H., Zhang B., et al. Identification of Susceptibility Loci and Genes for Colorectal Cancer Risk. Gastroenterology. 2016;150:1633–1645. doi: 10.1053/j.gastro.2016.02.076. PubMed DOI PMC
Grimm W.A., Messer J.S., Murphy S.F., Nero T., Lodolce J.P., Weber C.R., Logsdon M.F., Bartulis S., Sylvester B.E., Springer A., et al. The Thr300Ala variant in ATG16L1 is associated with improved survival in human colorectal cancer and enhanced production of type I interferon. Gut. 2016;65:456–464. doi: 10.1136/gutjnl-2014-308735. PubMed DOI PMC
Ma Y., Galluzzi L., Zitvogel L., Kroemer G. Autophagy and cellular immune responses. Immunity. 2013;39:211–227. doi: 10.1016/j.immuni.2013.07.017. PubMed DOI
Fernandez-Rozadilla C., Cazier J.B., Tomlinson I.P., Carvajal-Carmona L.G., Palles C., Lamas M.J., Baiget M., Lopez-Fernandez L.A., Brea-Fernandez A., Abuli A., et al. A colorectal cancer genome-wide association study in a Spanish cohort identifies two variants associated with colorectal cancer risk at 1p33 and 8p12. BMC Genom. 2013;14:55. doi: 10.1186/1471-2164-14-55. PubMed DOI PMC
Guo F., Weigl K., Carr P.R., Heisser T., Jansen L., Knebel P., Chang-Claude J., Hoffmeister M., Brenner H. Use of Polygenic Risk Scores to Select Screening Intervals After Negative Findings From Colonoscopy. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2020 doi: 10.1016/j.cgh.2020.04.077. PubMed DOI
Schmit S.L., Edlund C.K., Schumacher F.R., Gong J., Harrison T.A., Huyghe J.R., Qu C., Melas M., Van Den Berg D.J., Wang H., et al. Novel Common Genetic Susceptibility Loci for Colorectal Cancer. J. Natl. Cancer Inst. 2019;111:146–157. doi: 10.1093/jnci/djy099. PubMed DOI PMC
Hofer P., Hagmann M., Brezina S., Dolejsi E., Mach K., Leeb G., Baierl A., Buch S., Sutterluty-Fall H., Karner-Hanusch J., et al. Bayesian and frequentist analysis of an Austrian genome-wide association study of colorectal cancer and advanced adenomas. Oncotarget. 2017;8:98623–98634. doi: 10.18632/oncotarget.21697. PubMed DOI PMC
Peters U., Jiao S., Schumacher F.R., Hutter C.M., Aragaki A.K., Baron J.A., Berndt S.I., Bezieau S., Brenner H., Butterbach K., et al. Identification of Genetic Susceptibility Loci for Colorectal Tumors in a Genome-Wide Meta-analysis. Gastroenterology. 2013;144:799–807.e724. doi: 10.1053/j.gastro.2012.12.020. PubMed DOI PMC
Schumacher F.R., Schmit S.L., Jiao S., Edlund C.K., Wang H., Zhang B., Hsu L., Huang S.C., Fischer C.P., Harju J.F., et al. Genome-wide association study of colorectal cancer identifies six new susceptibility loci. Nat. Commun. 2015;6:7138. doi: 10.1038/ncomms8138. PubMed DOI PMC
Weigl K., Chang-Claude J., Knebel P., Hsu L., Hoffmeister M., Brenner H. Strongly enhanced colorectal cancer risk stratification by combining family history and genetic risk score. Clin. Epidemiol. 2018;10:143–152. doi: 10.2147/CLEP.S145636. PubMed DOI PMC
Law P.J., Timofeeva M., Fernandez-Rozadilla C., Broderick P., Studd J., Fernandez-Tajes J., Farrington S., Svinti V., Palles C., Orlando G., et al. Association analyses identify 31 new risk loci for colorectal cancer susceptibility. Nat. Commun. 2019;10:2154. doi: 10.1038/s41467-019-09775-w. PubMed DOI PMC
Sanchez-Maldonado J.M., Martinez-Bueno M., Canhao H., Ter Horst R., Munoz-Pena S., Moniz-Diez A., Rodriguez-Ramos A., Escudero A., Sorensen S.B., Hetland M.L., et al. NFKB2 polymorphisms associate with the risk of developing rheumatoid arthritis and response to TNF inhibitors: Results from the REPAIR consortium. Sci. Rep. 2020;10:4316. doi: 10.1038/s41598-020-61331-5. PubMed DOI PMC
Li Y., Oosting M., Smeekens S.P., Jaeger M., Aguirre-Gamboa R., Le K.T.T., Deelen P., Ricano-Ponce I., Schoffelen T., Jansen A.F.M., et al. A Functional Genomics Approach to Understand Variation in Cytokine Production in Humans. Cell. 2016;167:1099–1110.e1014. doi: 10.1016/j.cell.2016.10.017. PubMed DOI
Aguirre-Gamboa R., Joosten I., Urbano P.C.M., van der Molen R.G., van Rijssen E., van Cranenbroek B., Oosting M., Smeekens S., Jaeger M., Zorro M., et al. Differential Effects of Environmental and Genetic Factors on T and B Cell Immune Traits. Cell Rep. 2016;17:2474–2487. doi: 10.1016/j.celrep.2016.10.053. PubMed DOI PMC
Orru V., Steri M., Sole G., Sidore C., Virdis F., Dei M., Lai S., Zoledziewska M., Busonero F., Mulas A., et al. Genetic variants regulating immune cell levels in health and disease. Cell. 2013;155:242–256. doi: 10.1016/j.cell.2013.08.041. PubMed DOI PMC
Westra H.J., Peters M.J., Esko T., Yaghootkar H., Schurmann C., Kettunen J., Christiansen M.W., Fairfax B.P., Schramm K., Powell J.E., et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 2013;45:1238–1243. doi: 10.1038/ng.2756. PubMed DOI PMC
Ber Y., Shiloh R., Gilad Y., Degani N., Bialik S., Kimchi A. DAPK2 is a novel regulator of mTORC1 activity and autophagy. Cell Death Differ. 2015;22:465–475. doi: 10.1038/cdd.2014.177. PubMed DOI PMC
Geering B., Stoeckle C., Rozman S., Oberson K., Benarafa C., Simon H.U. DAPK2 positively regulates motility of neutrophils and eosinophils in response to intermediary chemoattractants. J. Leukoc. Biol. 2014;95:293–303. doi: 10.1189/jlb.0813462. PubMed DOI
Geering B., Zokouri Z., Hurlemann S., Gerrits B., Auslander D., Britschgi A., Tschan M.P., Simon H.U., Fussenegger M. Identification of Novel Death-Associated Protein Kinase 2 Interaction Partners by Proteomic Screening Coupled with Bimolecular Fluorescence Complementation. Mol. Cell. Biol. 2016;36:132–143. doi: 10.1128/MCB.00515-15. PubMed DOI PMC
Rizzi M., Tschan M.P., Britschgi C., Britschgi A., Hugli B., Grob T.J., Leupin N., Mueller B.U., Simon H.U., Ziemiecki A., et al. The death-associated protein kinase 2 is up-regulated during normal myeloid differentiation and enhances neutrophil maturation in myeloid leukemic cells. J. Leukoc. Biol. 2007;81:1599–1608. doi: 10.1189/jlb.0606400. PubMed DOI
Humbert M., Federzoni E.A., Britschgi A., Schlafli A.M., Valk P.J., Kaufmann T., Haferlach T., Behre G., Simon H.U., Torbett B.E., et al. The tumor suppressor gene DAPK2 is induced by the myeloid transcription factors PU.1 and C/EBPalpha during granulocytic differentiation but repressed by PML-RARalpha in APL. J. Leukoc. Biol. 2014;95:83–93. doi: 10.1189/jlb.1112608. PubMed DOI PMC
Zhang J., Liu L., Sun Y., Xiang J., Zhou D., Wang L., Xu H., Yang X., Du N., Zhang M., et al. MicroRNA-520g promotes epithelial ovarian cancer progression and chemoresistance via DAPK2 repression. Oncotarget. 2016;7:26516–26534. doi: 10.18632/oncotarget.8530. PubMed DOI PMC
Furuta G.T., Nieuwenhuis E.E., Karhausen J., Gleich G., Blumberg R.S., Lee J.J., Ackerman S.J. Eosinophils alter colonic epithelial barrier function: Role for major basic protein. Am. J. Physiol. Gastrointest. Liver Physiol. 2005;289:G890–G897. doi: 10.1152/ajpgi.00015.2005. PubMed DOI
McLoed A.G., Sherrill T.P., Cheng D.S., Han W., Saxon J.A., Gleaves L.A., Wu P., Polosukhin V.V., Karin M., Yull F.E., et al. Neutrophil-Derived IL-1beta Impairs the Efficacy of NF-kappaB Inhibitors against Lung Cancer. Cell Rep. 2016;16:120–132. doi: 10.1016/j.celrep.2016.05.085. PubMed DOI PMC
Butt J., Epplein M. Helicobacter pylori and colorectal cancer-A bacterium going abroad? PLoS Pathog. 2019;15:e1007861. doi: 10.1371/journal.ppat.1007861. PubMed DOI PMC
Correa P., Houghton J. Carcinogenesis of Helicobacter pylori. Gastroenterology. 2007;133:659–672. doi: 10.1053/j.gastro.2007.06.026. PubMed DOI
Shimabukuro-Vornhagen A., Schlosser H.A., Gryschok L., Malcher J., Wennhold K., Garcia-Marquez M., Herbold T., Neuhaus L.S., Becker H.J., Fiedler A., et al. Characterization of tumor-associated B-cell subsets in patients with colorectal cancer. Oncotarget. 2014;5:4651–4664. doi: 10.18632/oncotarget.1701. PubMed DOI PMC
Wang L., Wang Y., Lu Y., Zhang Q., Qu X. Heterozygous deletion of ATG5 in Apc(Min/+) mice promotes intestinal adenoma growth and enhances the antitumor efficacy of interferon-gamma. Cancer Biol. Ther. 2015;16:383–391. doi: 10.1080/15384047.2014.1002331. PubMed DOI PMC
Lauzier A., Normandeau-Guimond J., Vaillancourt-Lavigueur V., Boivin V., Charbonneau M., Rivard N., Scott M.S., Dubois C.M., Jean S. Colorectal cancer cells respond differentially to autophagy inhibition in vivo. Sci. Rep. 2019;9:11316. doi: 10.1038/s41598-019-47659-7. PubMed DOI PMC
Wang L., Qi J., Yu J., Chen H., Zou Z., Lin X., Guo L. Overexpression of Rictor protein in colorectal cancer is correlated with tumor progression and prognosis. Oncol. Lett. 2017;14:6198–6202. doi: 10.3892/ol.2017.6936. PubMed DOI PMC
Iula L., Keitelman I.A., Sabbione F., Fuentes F., Guzman M., Galletti J.G., Gerber P.P., Ostrowski M., Geffner J.R., Jancic C.C., et al. Autophagy Mediates Interleukin-1beta Secretion in Human Neutrophils. Front. Immunol. 2018;9:269. doi: 10.3389/fimmu.2018.00269. PubMed DOI PMC
Xu Z., Zhu C., Chen C., Zong Y., Feng H., Liu D., Feng W., Zhao J., Lu A. CCL19 suppresses angiogenesis through promoting miR-206 and inhibiting Met/ERK/Elk-1/HIF-1alpha/VEGF-A pathway in colorectal cancer. Cell Death Dis. 2018;9:974. doi: 10.1038/s41419-018-1010-2. PubMed DOI PMC
Saitoh T., Akira S. Regulation of inflammasomes by autophagy. J. Allergy Clin. Immunol. 2016;138:28–36. doi: 10.1016/j.jaci.2016.05.009. PubMed DOI
Pliyev B.K., Menshikov M. Differential effects of the autophagy inhibitors 3-methyladenine and chloroquine on spontaneous and TNF-alpha-induced neutrophil apoptosis. Apoptosis. 2012;17:1050–1065. doi: 10.1007/s10495-012-0738-x. PubMed DOI
Zhang X., Zhang Y., He Z., Yin K., Li B., Zhang L., Xu Z. Chronic stress promotes gastric cancer progression and metastasis: An essential role for ADRB2. Cell Death Dis. 2019;10:788. doi: 10.1038/s41419-019-2030-2. PubMed DOI PMC
Moreno-Smith M., Lutgendorf S.K., Sood A.K. Impact of stress on cancer metastasis. Future Oncol. 2010;6:1863–1881. doi: 10.2217/fon.10.142. PubMed DOI PMC
Swertz M.A., Dijkstra M., Adamusiak T., van der Velde J.K., Kanterakis A., Roos E.T., Lops J., Thorisson G.A., Arends D., Byelas G., et al. The MOLGENIS toolkit: Rapid prototyping of biosoftware at the push of a button. BMC Bioinform. 2010;11(Suppl. 12):S12. doi: 10.1186/1471-2105-11-S12-S12. PubMed DOI PMC
Wilkinson M.D., Dumontier M., Aalbersberg I.J., Appleton G., Axton M., Baak A., Blomberg N., Boiten J.W., da Santos L.B.S., Bourne P.E., et al. Addendum: The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data. 2019;6:6. doi: 10.1038/s41597-019-0009-6. PubMed DOI PMC
Wilkinson M.D., Dumontier M., Aalbersberg I.J., Appleton G., Axton M., Baak A., Blomberg N., Boiten J.W., da Santos L.B.S., Bourne P.E., et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data. 2016;3:160018. doi: 10.1038/sdata.2016.18. PubMed DOI PMC