Synthetic Biomimetic Polymethacrylates: Promising Platform for the Design of Anti-Cyanobacterial and Anti-Algal Agents
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LM2018121
RECETOX Research Infrastructure
RVO 67985939
long-term research development project of Institute of Botany
857560
CETOCOEN EXCELLENCE Teaming 2 project
DMR-0845592
NSF National Science Foundation for NSF CAREER Award
26-774
JSPS Postdoctoral Fellowships for Research Abroad
PubMed
33810255
PubMed Central
PMC8036423
DOI
10.3390/polym13071025
PII: polym13071025
Knihovny.cz E-zdroje
- Klíčová slova
- algae, antimicrobials, biomimetic polymers, cyanobacteria, polymethacrylates, water treatment,
- Publikační typ
- časopisecké články MeSH
Extensive, uncontrolled growth of algae and cyanobacteria is an environmental, public health, economic, and technical issue in managing natural and engineered water systems. Synthetic biomimetic polymers have been almost exclusively considered antimicrobial alternatives to conventional antibiotics to treat human bacterial infections. Very little is known about their applicability in an aquatic environment. Here, we introduce synthetic biomimetic polymethacrylates (SBPs) as a cost-effective and chemically facile, flexible platform for designing a new type of agent suitable for controlling and mitigating photosynthetic microorganisms. Since SBPs are cationic and membranolytic in heterotrophic bacteria, we hypothesized they could also interact with negatively charged cyanobacterial or algal cell walls and membranes. We demonstrated that SBPs inhibited the growth of aquatic photosynthetic organisms of concern, i.e., cyanobacteria (Microcystis aeruginosa and Synechococcus elongatus) and green algae (Chlamydomonas reinhardtii and Desmodesmus quadricauda), with 50% effective growth-inhibiting concentrations ranging between 95 nM and 6.5 μM. Additionally, SBPs exhibited algicidal effects on C. reinhardtii and cyanocidal effects on picocyanobacterium S. elongatus and microcystin-producing cyanobacterium M. aeruginosa. SBP copolymers, particularly those with moderate hydrophobic content, induced more potent cyanostatic and cyanocidal effects than homopolymers. Thus, biomimetic polymers are a promising platform for the design of anti-cyanobacterial and anti-algal agents for water treatment.
Zobrazit více v PubMed
Vardaka E., Kormas K.A. Advancing knowledge on cyanobacterial blooms in freshwaters. Water. 2020;12:2583. doi: 10.3390/w12092583. DOI
World Health Organization . Guidelines for Safe Recreational Water Environments. World Health Organization; Geneva, Switzerland: 2003. Algae and cyanobacteria in fresh water; pp. 136–154.
Di Pippo F., Di Gregorio L., Congestri R., Tandoi V., Rossetti S. Biofilm growth and control in cooling water industrial systems. FEMS Microbiol. Ecol. 2018;94 doi: 10.1093/femsec/fiy044. PubMed DOI
Hauer T., Čapek P., Böhmová P. Main photoautotrophic components of biofilms in natural draft cooling towers. Folia Microbiol. 2016;61:255–260. doi: 10.1007/s12223-015-0429-4. PubMed DOI
Dehghani M.H. Removal of cyanobacterial and algal cells from water by ultrasonic waves—A review. J. Mol. Liq. 2016;222:1109–1114. doi: 10.1016/j.molliq.2016.08.010. DOI
Sengco M.R., Anderson D.M. Controlling harmful algal blooms through clay flocculation. J. Eukaryot. Microbiol. 2004;51:169–172. doi: 10.1111/j.1550-7408.2004.tb00541.x. PubMed DOI
Anderson D.M. Approaches to monitoring, control and management of harmful algal blooms (HABs) Ocean Coast. Manag. 2009;52:342. doi: 10.1016/j.ocecoaman.2009.04.006. PubMed DOI PMC
Hamilton D.P., Salmaso N., Paerl H.W. Mitigating harmful cyanobacterial blooms: Strategies for control of nitrogen and phosphorus loads. Aquat. Ecol. 2016;50:351–366. doi: 10.1007/s10452-016-9594-z. DOI
Matthijs H.C.P., Jančula D., Visser P.M., Maršálek B. Existing and emerging cyanocidal compounds: New perspectives for cyanobacterial bloom mitigation. Aquat. Ecol. 2016;50:443–460. doi: 10.1007/s10452-016-9577-0. DOI
Westrick J.A., Szlag D.C., Southwell B.J., Sinclair J. A review of cyanobacteria and cyanotoxins removal/inactivation in drinking water treatment. Anal. Bioanal. Chem. 2010;397:1705–1714. doi: 10.1007/s00216-010-3709-5. PubMed DOI
Jančula D., Maršálek B. Critical review of actually available chemical compounds for prevention and management of cyanobacterial blooms. Chemosphere. 2011;85:1415–1422. doi: 10.1016/j.chemosphere.2011.08.036. PubMed DOI
Qian P.-Y., Xu Y., Fusetani N. Natural products as antifouling compounds: Recent progress and future perspectives. Biofouling. 2010;26:223–234. doi: 10.1080/08927010903470815. PubMed DOI
Ergene C., Yasuhara K., Palermo E.F. Biomimetic antimicrobial polymers: Recent advances in molecular design. Polym. Chem. 2018;9:2407–2427. doi: 10.1039/C8PY00012C. DOI
Kamaruzzaman N.F., Tan L.P., Hamdan R.H., Choong S.S., Wong W.K., Gibson A.J., Chivu A., Pina M.d.F. Antimicrobial polymers: The potential replacement of existing antibiotics? Int. J. Mol. Sci. 2019;20:2747. doi: 10.3390/ijms20112747. PubMed DOI PMC
Santos M.R.E., Fonseca A.C., Mendonça P.V., Branco R., Serra A.C., Morais P.V., Coelho J.F.J. Recent developments in antimicrobial polymers: A review. Materials. 2016;9:599. doi: 10.3390/ma9070599. PubMed DOI PMC
Takahashi H., Palermo E.F., Yasuhara K., Caputo G.A., Kuroda K. Molecular design, structures, and activity of antimicrobial peptide-mimetic polymers. Macromol. Biosci. 2013;13:1285–1299. doi: 10.1002/mabi.201300126. PubMed DOI PMC
Fjell C.D., Hiss J.A., Hancock R.E.W., Schneider G. Designing antimicrobial peptides: Form follows function. Nat. Rev. Drug Discov. 2012;11:37–51. doi: 10.1038/nrd3591. PubMed DOI
Sovadinova I., Palermo E.F., Urban M., Mpiga P., Caputo G.A., Kuroda K. Activity and mechanism of antimicrobial peptide-mimetic amphiphilic polymethacrylate derivatives. Polymers. 2011;3:1512–1532. doi: 10.3390/polym3031512. DOI
Sovadinova I., Palermo E.F., Huang R., Thoma L.M., Kuroda K. Mechanism of polymer-induced hemolysis: Nanosized pore formation and osmotic lysis. Biomacromolecules. 2011;12:260–268. doi: 10.1021/bm1011739. PubMed DOI
Nadres E.T., Takahashi H., Kuroda K. Radical-medicated end-group transformation of amphiphilic methacrylate random copolymers for modulation of antimicrobial and hemolytic activities. J. Polym. Sci. Part A Polym. Chem. 2017;55:304–312. doi: 10.1002/pola.28384. DOI
Mikula P., Mlnarikova M., Takahashi H., Babica P., Kuroda K., Blaha L., Sovadinova I. Branched poly(ethylene imine)s as anti-algal and anti-cyanobacterial agents with selective flocculation behavior to cyanobacteria over algae. Macromol. Biosci. 2018;18:e1800187. doi: 10.1002/mabi.201800187. PubMed DOI
Staub R. Research on physiology of nutrients of the planktonic cyanobacterium Oscillatoria rubescens. Schweiz. Z. Hydrol. 1961;23:83–198.
Bold H.C. The morphology of Chlamydomonas chlamydogama, Sp. Nov. Bull. Torrey Bot. Club. 1949;76:101–108. doi: 10.2307/2482218. DOI
Pouneva I. Evaluation of algal culture viability and physiological state by fluorescent microscopic methods. Bulg. J. Plant Physiol. 1997;23:67–76.
Schulze K., Lopez D.A., Tillich U.M., Frohme M. A simple viability analysis for unicellular cyanobacteria using a new autofluorescence assay, automated microscopy, and ImageJ. BMC Biotechnol. 2011;11:118. doi: 10.1186/1472-6750-11-118. PubMed DOI PMC
Zetsche E.-M., Meysman F.J.R. Dead or alive? Viability assessment of micro- and mesoplankton. J. Plankton Res. 2012;34:493. doi: 10.1093/plankt/fbs018. DOI
Palermo E.F., Vemparala S., Kuroda K. Cationic spacer arm design strategy for control of antimicrobial activity and conformation of amphiphilic methacrylate random copolymers. Biomacromolecules. 2012;13:1632–1641. doi: 10.1021/bm300342u. PubMed DOI
Sabatini V., Cattò C., Cappelletti G., Cappitelli F., Antenucci S., Farina H., Ortenzi M.A., Camazzola S., Di Silvestro G. Protective features, durability and biodegration study of acrylic and methacrylic fluorinated polymer coatings for marble protection. Prog. Org. Coat. 2018;114:47–57. doi: 10.1016/j.porgcoat.2017.10.003. DOI
Preece E.P., Hardy F.J., Moore B.C., Bryan M. A review of microcystin detections in Estuarine and Marine waters: Environmental implications and human health risk. Harmful Algae. 2017;61:31–45. doi: 10.1016/j.hal.2016.11.006. DOI
Arora M., Sahoo D. Green Algae BT. In: Sahoo D., Seckbach J., editors. The Algae World. Springer; Dordrecht, The Netherlands: 2015. pp. 91–120.
Janssen C.R., Vangheluwe M., Van Sprang P. A brief review and critical evaluation of the status of microbiotests BT. In: Persoone G., Janssen C., De Coen W., editors. New Microbiotests for Routine Toxicity Screening and Biomonitoring. Springer; Boston, MA, USA: 2000. pp. 27–37.
Kenawy E.-R., Worley S.D., Broughton R. The chemistry and applications of antimicrobial polymers: A state-of-the-art review. Biomacromolecules. 2007;8:1359–1384. doi: 10.1021/bm061150q. PubMed DOI
Palermo E.F., Sovadinova I., Kuroda K. Structural determinants of antimicrobial activity and biocompatibility in membrane-disrupting methacrylamide random copolymers. Biomacromolecules. 2009;10:3098–3107. doi: 10.1021/bm900784x. PubMed DOI
Taha S.T., Han H., Chang S.-R., Sovadinova I., Kuroda K., Langford R.M., Clarkson B.H. Nano/micro fluorhydroxyapatite crystal pastes in the treatment of dentin hypersensitivity: An in vitro study. Clin. Oral Investig. 2015;19:1921–1930. doi: 10.1007/s00784-015-1427-2. PubMed DOI
Park S.-C., Moon J.C., Kim N.-H., Kim E.-J., Jeong J.-E., Nelson A.D.L., Jo B.-H., Jang M.-K., Lee J.R. Algicidal effect of hybrid peptides as potential inhibitors of harmful algal blooms. Biotechnol. Lett. 2016;38:847–854. doi: 10.1007/s10529-016-2052-0. PubMed DOI
Park S.-C., Lee J.-K., Kim S.W., Park Y. Selective algicidal action of peptides against harmful algal bloom species. PLoS ONE. 2011;6:e26733. doi: 10.1371/journal.pone.0026733. PubMed DOI PMC
Schafer H., Hettler H., Fritsche U., Pitzen G., Roderer G., Wenzel A. Biotests using unicellular algae and ciliates for predicting long-term effects of toxicants. Ecotoxicol. Environ. Saf. 1994;27:64–81. doi: 10.1006/eesa.1994.1007. PubMed DOI
US Environmental Protection Agency . OPP Pesticide Ecotoxicity Database. US Environmental Protection Agency; Washington, DC, USA: 2016.
Wyatt N.B., Gloe L.M., Brady P.V., Hewson J.C., Grillet A.M., Hankins M.G., Pohl P.I. Critical conditions for ferric chloride-induced flocculation of freshwater algae. Biotechnol. Bioeng. 2012;109:493–501. doi: 10.1002/bit.23319. PubMed DOI
Liu J., Zhu Y., Tao Y., Zhang Y., Li A., Li T., Sang M., Zhang C. Freshwater microalgae harvested via flocculation induced by pH decrease. Biotechnol. Biofuels. 2013;6:98. doi: 10.1186/1754-6834-6-98. PubMed DOI PMC
Hoiczyk E., Hansel A. Cyanobacterial cell walls: News from an unusual prokaryotic envelope. J. Bacteriol. 2000;182:1191–1199. doi: 10.1128/JB.182.5.1191-1199.2000. PubMed DOI PMC
Gantt E. Supramolecular membrane organization. In: Bryant D.A., editor. The Molecular Biology of Cyanobacteria. Springer Science & Business Media; Berlin/Heidelberg, Germany: 2006. p. 121.
Haranahalli K., Tong S., Ojima I. Recent advances in the discovery and development of antibacterial agents targeting the cell-division protein FtsZ. Bioorg. Med. Chem. 2016;24:6354–6369. doi: 10.1016/j.bmc.2016.05.003. PubMed DOI PMC
Klibanov A.M. Permanently microbicidal materials coatings. J. Mater. Chem. 2007;17:2479–2482. doi: 10.1039/b702079a. DOI
Tashiro T. Antibacterial and bacterium adsorbing macromolecules. Macromol. Mater. Eng. 2001;286:63–87. doi: 10.1002/1439-2054(20010201)286:2<63::AID-MAME63>3.0.CO;2-H. DOI
Gonzalo S., Rodea-Palomares I., Leganes F., Garcia-Calvo E., Rosal R., Fernandez-Pinas F. First evidences of PAMAM dendrimer internalization in microorganisms of environmental relevance: A linkage with toxicity and oxidative stress. Nanotoxicology. 2015;9:706–718. doi: 10.3109/17435390.2014.969345. PubMed DOI
Petit A.-N., Debenest T., Eullaffroy P., Gagne F. Effects of a cationic PAMAM dendrimer on photosynthesis and ROS production of Chlamydomonas reinhardtii. Nanotoxicology. 2012;6:315–326. doi: 10.3109/17435390.2011.579628. PubMed DOI
Petit A.-N., Eullaffroy P., Debenest T., Gagne F. Toxicity of PAMAM dendrimers to Chlamydomonas reinhardtii. Aquat. Toxicol. 2010;100:187–193. doi: 10.1016/j.aquatox.2010.01.019. PubMed DOI
Sun J., Liu D. Geometric models for calculating cell biovolume and surface area for phytoplankton. J. Plankton Res. 2003;25:1331–1346. doi: 10.1093/plankt/fbg096. DOI
Umysova D., Vitova M., Douskova I., Bisova K., Hlavova M., Cizkova M., Machat J., Doucha J., Zachleder V. Bioaccumulation and toxicity of selenium compounds in the green alga Scenedesmus quadricauda. BMC Plant Biol. 2009;9:58. doi: 10.1186/1471-2229-9-58. PubMed DOI PMC
Domozych D.S., Ciancia M., Fangel J.U., Mikkelsen M.D., Ulvskov P., Willats W.G.T. The cell walls of green algae: A journey through evolution and diversity. Front. Plant Sci. 2012;3:82. doi: 10.3389/fpls.2012.00082. PubMed DOI PMC
Voigt J., Woestemeyer J., Frank R. The chaotrope-soluble glycoprotein GP2 is a precursor of the insoluble glycoprotein framework of the Chlamydomonas cell wall. J. Biol. Chem. 2007;282:30381–30392. doi: 10.1074/jbc.M701673200. PubMed DOI
Fiore M.F., Trevors J.T. Cell composition and metal tolerance in cyanobacteria. Biometals. 1994;7:83–103. doi: 10.1007/BF00140478. DOI
Jürgens U.J., Martin C., Weckesser J. Cell wall constituents of Microcystis sp. PCC 7806. FEMS Microbiol. Lett. 1989;65:47–51. doi: 10.1016/0378-1097(89)90364-9. PubMed DOI
Dai H., Huang Y., Huang H. Eco-friendly polyvinyl alcohol/carboxymethyl cellulose hydrogels reinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue. Carbohydr. Polym. 2018;185:1–11. doi: 10.1016/j.carbpol.2017.12.073. PubMed DOI
Kumar R., Sharma K., Tiwary K.P., Sen G. Polymethacrylic acid grafted psyllium (Psy-g-PMA): A novel material for waste water treatment. Appl. Water Sci. 2013;3:285–291. doi: 10.1007/s13201-013-0081-6. DOI