Transglycosylation abilities of β-d-galactosidases from GH family 2
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
33816045
PubMed Central
PMC7960840
DOI
10.1007/s13205-021-02715-w
PII: 2715
Knihovny.cz E-zdroje
- Klíčová slova
- Carbohydrate family, Catalysis, Homology modeling, Hydrolases, Ligand-docking,
- Publikační typ
- časopisecké články MeSH
UNLABELLED: The ability to predict the transglycosylation activity of glycosidases by in silico analysis was investigated. The transglycosylation abilities of 7 different β-d-galactosidases from GH family 2 were tested experimentally using 7 different acceptors and p-nitrophenyl-β-d-galactopyranoside as a donor of galactosyl moiety. Similar transglycosylation abilities were confirmed for all enzymes originating from bacteria belonging to Enterobacteriaceae, which were able to use all tested acceptor molecules. Higher acceptor selectivity was observed for all others used bacterial strains. Structure models of all enzymes were constructed using homology modeling. Ligand-docking method was used for enzymes-transglycosylation products models construction and evaluation. Results obtained by in silico analysis were compared with results arisen out of experimental testing. The experiments confirmed that significant differences in transglycosylation abilities are caused by small differences in active sites composition of analyzed enzymes. According to obtained result, it is possible to conclude that homology modeling may serve as a quick starting point for detection or exclusion of enzymes with defined transglycosylation abilities, which can be used for subsequent synthesis of e.g., pharmaceutically interesting glycosides. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02715-w.
Zobrazit více v PubMed
Bartesaghi A, Merk A, Banerjee S, Matthies D, Wu X, Milne JL, Subramaniam S. 2.2 Å resolution cryo-EM structure of β-galactosidase in complex with a cell-permeant inhibitor. Science. 2015;348:1147–1151. doi: 10.1126/science.aab1576. PubMed DOI PMC
Bojarová P, Křen V. Glycosidases in carbohydrate synthesis: when organic chemistry falls short. Chimia. 2011;65:65–70. doi: 10.2533/chimia.2011.65. PubMed DOI
Brás NF, Fernandes PA, Ramos MJ. QM/MM studies on the β-galactosidase catalytic mechanism: hydrolysis and transglycosylation reactions. J Chem Theory Comput. 2010;6(2):421–433. doi: 10.1021/ct900530f. PubMed DOI
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC
Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem. 2006;49:6177–6196. doi: 10.1021/jm051256o. PubMed DOI
Henrissat B, Davies G. Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol. 1997;7:637–644. doi: 10.1016/S0959-440X(97)80072-3. PubMed DOI
Jorgensen WL. The many roles of computation in drug discovery. Science. 2004;303:1813–1818. doi: 10.1126/science.1096361. PubMed DOI
Juers DH, Heightman TD, Vasella A, McCarter JD, Mackenzie L, Withers SG, Matthews BW. A structural view of the action of Escherichia Coli (Lacz) Beta-galactosidase. Biochemistry. 2020;40:14781–14794. doi: 10.1021/bi011727i. PubMed DOI
Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The Carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490–D495. doi: 10.1093/nar/gkt1178. PubMed DOI PMC
Lu L, Guo L, Wang K, Liu Y, Xiao M. β-Galactosidases: A great tool for synthesizing galactose-containing carbohydrates. Biotechnol Adv. 2020;39:107465. doi: 10.1016/j.biotechadv.2019.107465. PubMed DOI
Materials Science Suite . Schrödinger. New York, NY: LLC; 2018. p. 2018.
Miguez Amil S, Jimenez-Ortega E, Ramirez-Escudero M, Talens-Perales D, Marin-Navarro J, Polaina J, Sanz-Aparicio J, Fernandez-Leiro R. The cryo-EM structure of Thermotoga maritima beta-Galactosidase: quaternary structure guides protein engineering. ACS Chem Biol. 2020;15:179–188. doi: 10.1021/acschembio.9b00752. PubMed DOI
Naumoff DG. Hierarchical classification of glycoside hydrolase. Biochemistry (Moscow) 2011;76:622–635. doi: 10.1134/S0006297911060022. PubMed DOI
Nelson DL, Cox MM. Lehninger principles of biochemistry. 4. New York, NY: W. H. Freeman & Co.; 2005.
Pagadala NS, Syed K, Tuszynski J. Software for molecular docking: a review. Biophys Rev. 2017;9:91–102. doi: 10.1007/s12551-016-0247-1. PubMed DOI PMC
Pawlak-Szukalska A, Wanarska M, Popinigis AT, Kur J. A novel cold-active β-d-galactosidase with transglycosylation activity from the Antarctic Arthrobacter sp. 32cB—Gene cloning, purification and characterization. Process Biochem. 2014;49(12):2122–2133. doi: 10.1016/j.procbio.2014.09.018. DOI
Rutkiewicz M, Bujacz A, Wanarska M, Wierzbicka-Wos A, Cieslinski H. Active Site Architecture and Reaction Mechanism Determination of Cold Adapted β-d-galactosidase from Arthrobacter sp. 32cB. Int. J. Mol. Sci. 2019;20(17):4301. doi: 10.3390/ijms20174301. PubMed DOI PMC
Rutkiewicz M, Bujacz A. Bujacz G (2019) Structural features of cold-adapted dimeric GH2 β-d-galactosidase from Arthrobacter sp. 32cB. Biochim Biophys Acta Proteins Proteomics. 1867;9:776–786. doi: 10.1016/j.bbapap.2019.06.001. PubMed DOI
Rutkiewicz M, Wanarska M, Bujacz A. Mapping the Transglycosylation Relevant Sites of Cold-Adapted β-d-Galactosidase from Arthrobacter sp. 32cB. Int J Mol Sci. 2020;21(15):5354. doi: 10.3390/ijms21155354. PubMed DOI PMC
Saqib S, Akram A, Halim SA, Tassaduq R. Sources of β-galactosidase and its applications in food industry. Biotech. 2017;7:1–7. doi: 10.1007/s13205-017-0645-5. PubMed DOI PMC
Sastry GM, Adzhigirey M, Day T, Annabhimouju R, Sherman W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des. 2013;27:221–234. doi: 10.1007/s10822-013-9644-8. PubMed DOI
Šícho M, Svozil D. Molekulové dokování jako nástroj pro virtuální návrh léčiv. Chemické Listy. 2017;111:754–759.
Sippl MJ. Recognition of errors in three-dimensional structures of proteins. Proteins. 1993;17:355–362. doi: 10.1002/prot.340170404. PubMed DOI
Skálová T, Dohnálek J, Spiwok V, Lipovová P, Vondráčková E, Petroková H, Dušková J, Strnad H, Králová B, Hašek J. Cold-active β-galactosidase from Arthrobacter sp. C2–2 forms compact 660 kDa hexamers: crystal structure at 1.9 Å resolution. J Mol Biol. 2005;353:282–294. doi: 10.1016/j.jmb.2005.08.028. PubMed DOI
Wang LX, Huang W. Enzymatic transglycosylation for glycoconjugate synthesis. Curr Opin Chem Biol. 2009;13:592–600. doi: 10.1016/j.cbpa.2009.08.014. PubMed DOI PMC
Webb B, Sali A. Comparative Protein Structure Modeling Using Modeller. Curr Protocols Bioinf. 2016;54:5.6.1–5.6.37. doi: 10.1002/cpbi.3. PubMed DOI PMC