High fluoride resistance and virulence profile of environmental Pseudomonas isolated from water sources
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
33821405
DOI
10.1007/s12223-021-00867-z
PII: 10.1007/s12223-021-00867-z
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky farmakologie MeSH
- bakteriální léková rezistence * genetika MeSH
- Escherichia coli genetika MeSH
- faktory virulence * genetika MeSH
- fluoridy * analýza farmakologie MeSH
- mikrobiologie vody MeSH
- Pseudomonas aeruginosa klasifikace genetika MeSH
- Pseudomonas * klasifikace účinky léků genetika patogenita MeSH
- voda chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Indie MeSH
- Názvy látek
- antibakteriální látky MeSH
- faktory virulence * MeSH
- fluoridy * MeSH
- voda MeSH
In our previous study, all Pseudomonas strains THP6, THP41, and OHP5 were identified as fluoride-resistant bacteria isolated from Dindigul district, Tamilnadu, India. The selected strains exhibiting a high level of fluoride resistance was determined in Luria broth (LB) medium and LB agar plates. In a further effort, fluoride-resistant organisms were tested for hemolytic activity and showed β-hemolysis on blood agar plates. The virulence factors such as gyrB, toxA, algD and lasB, plcH, rhlC and biofilm response genes (pslA, pelA, ppyR) were detected by PCR analysis. The putative genus-specific and species-specific PCR also confirmed that the selected fluoride-resistant strains were belonging to Pseudomonas aeruginosa species. Fluoride-resistance gene crcB was amplified by gene-specific primers. The crcB gene was cloned in TA vector and transformed into E. coli DH5α. Comparative and blast analysis of THP6, THP41, and OHP5 strains crcB gene sequences were high homology with P. aeruginosa fluoride efflux transporter crcB and P. aeruginosa putative fluoride ion transporter crcB. The recombinants were efficiently growing in the NaF containing LB agar plates. The fluoride tolerance of these strains was also associated with resistance to multiple antibiotics. These results can lead to the use of the fluoride resistance gene of P. aeruginosa for the development of a biosensor for fluoride detection.
Zobrazit více v PubMed
Abada E, Al-Fifi Z, Al-Rajab AJ, Mahdhi M, Sharma M (2019) Molecular identification of biological contaminants in different drinking water resources of the Jazan region, Saud Arabia. J Water Health 17:622–632. https://doi.org/10.2166/wh.2019.019 PubMed DOI
Adimalla N, Venkatayogi S (2017) Mechanism of fluoride enrichment in groundwater of hard rock aquifers in Medak, Telangana State, South India. Environ Earth Sci 76:45. https://doi.org/10.1007/s12665-016-6362-2
Abdel-Mawgoud AM, Lepine F, Deziel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86:1323–1336. https://doi.org/10.1007/s00253-010-2498-2 PubMed DOI PMC
Altschul SF, Maddan TL, Schaffer AA, Zang J, Zang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. https://doi.org/10.1093/nar/25.17.3389 PubMed DOI PMC
Baker JL, Sudarsan L, Weinberg Z, Roth A, Stockbridge RB, Breaker RR (2012) Widespread genetic switches and toxicity resistance proteins for fluoride. Science 335:233-235. https://doi.org/10.1126/science.1215063
Balasubramanian D, Schneper L, Kumari H, Mathee K (2013) A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Res 41:1–20. https://doi.org/10.1093/nar/gks1039 PubMed DOI
Bej AK, Mahbubani MH, Dicesare JL, Atlas RM (1991) Polymerase chain reaction-gene probe detection of microorganisms by using filter-concentrated samples. Appl Environ Microbiol 57:3529–3534 DOI
Edrington TS, Fox WE, Callaway TR, Anderson RC, Hoffman DW, Nisbet DJ (2009) Pathogen prevalence and influence of composted dairy manure application on antimicrobial resistance profiles of commensal soil bacteria. Foodborne Pathog Dis 6:217–224. https://doi.org/10.1089/fpd.2008.0184 PubMed DOI
Edward Raja C (2018) Cadmium (heavy metals) bioremediation by Pseudomonas aeruginosa: a minireview. Appl Water Sci 8:154. https://doi.org/10.1007/s13201-018-0796-5 DOI
Edward Raja C, Anbazhagan K, Selvam GS (2006) Isolation and characterization of a metal resistant Pseudomonas aeruginosa strain. World J Microbiol Biotechnol 22:577–585. https://doi.org/10.1007/s11274-005-9074-4 DOI
Eren E, Ozturk M, Mumcu EF, Canatan D (2005) Fluorosis and its hematological effects. Toxicol Ind Health 21:255-258. https://doi.org/10.1191/0748233705th236oa
Fields PI, Popovic T, Wachsmuth K, Olsvik O (1992) Use of polymerase chain reaction for the detection of toxigenic Vibrio cholerae 01 strains from the Latin American cholera epidemic. J Clin Microbiol 30:2118–2121 DOI
Hancock RE, Speert DP (2000) Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. Drug Resist Updat 3:247–255. https://doi.org/10.1054/drup.2000.0152 PubMed DOI
Hashish NMA, Abbass AAG, Amine AEK (2017) Pseudomonas aeruginosa in swimming pools. Cogent Environ Sci 3:1328841 DOI
Hassan A, Usman J, Kaleem F, Omair M, Khalid A, Iqbal M (2011) Evaluation of different detection methods of biofilm formation in the clinical isolates. Braz J Infect Dis 15:305–311. https://doi.org/10.1016/S1413-8670(11)70197-0 PubMed DOI
Hassan SHA, Abskharon RN, Gad El-Rab SMF, Shoreit AAM (2008) Isolation, characterization of heavy metal resistant strain of Pseudomonas aeruginosa isolated from polluted sites in Assiut city. Egypt. J Basic Microbiol 48:168–176. https://doi.org/10.1002/jobm.200700338 PubMed DOI
Hou W, Sun X, Wang Z, Zhang Y (2012) Biofilm-forming capacity of Staphylococcus epidermidis, Staphylococcus aureus, and Pseudomonas aeruginosa from ocular infections biofilm-forming capacity of human flora bacteria. Invest Ophthalmol Vis Sci 53:5624–5631. https://doi.org/10.1167/iovs.11-9114 PubMed DOI
Karatuna O, Yagci A (2010) Analysis of quorum sensing dependent virulence factor production and its relationship with antimicrobial susceptibility in Pseudomonas aeruginosa respiratory isolates. Clin Microbiol Infect 16:1770–1775. https://doi.org/10.1111/j.1469-0691.2010.03177.x PubMed DOI
Katiyar P, Pandey N, Sahu KK (2020) Biological approaches of fluoride remediation: potential for environmental clean-up. Environ Sci Pollut Res 27:13044-13055. https://doi.org/10.1007/s11356-020.-08224-2
Khan AA, Cerniglia CE (1994) Detection of Pseudomonas aeruginosa from clinical and environmental samples by amplification of the exotoxin A gene using PCR. Appl Environ Microbiol 60:3739–3745 DOI
Lambert PA (2002) Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. J Roy Soc Med 95:22–26 PubMed PMC
Lanotte P, Watt S, Mereghetti L, Dartiguelongue N, Rastegar-Lari A, Goudeau A, Quentin R (2004) Genetic features of Pseudomonas aeruginosa isolates from cystic fibrosis patients compared with those of isolates from other origins. J Med Microbiol 53:73–81. https://doi.org/10.1099/jmm.0.05324-0 PubMed DOI
Laverty G, Gorman SP, Gilmore BF (2014) Biomolecular mechanisms of Pseudomonas aeruginosa and Escherichia coli biofilm formation. Pathogens 3:596–632. https://doi.org/10.3390/pathogens3030596 PubMed DOI PMC
Lee CS, Wetzel K, Buckley T, Wozniak D, Lee J (2011) Rapid and sensitive detection of Pseudomonas aeruginosa in chlorinated water and aerosols targeting gyrB gene using real-time PCR. J Appl Microbiol 111:893–903. https://doi.org/10.1111/j.1365-2672.2011.05107.x PubMed DOI PMC
Ma KY, Sun MY, Dong W, He CQ, Chen FL, Ma YL (2016) Effects of nutrition optimization strategy on rhamnolipid production in a Pseudomonas aeruginosa strain DN1 for bioremediation of crude oil. Biocatal Agric Biotechnol 6:144-151. https://doi.org/10.1016/j.bcab.2016.03.008
Majtán V, Hostacká A, Kosiarová A, Majtánová L, Kohutová S (1991) On the toxinogenicity of Pseudomonas aeruginosa strains. J Hyg Epidemiol Microbiol Immunol 35:217–224 PubMed
Martins VV, Pitondo-Silva A, Manco Lde M, Falcao JP, Freitas SS, da Silveira WD, Stehling EG (2013) Pathogenic potential and genetic diversity of environmental and clinical isolates of Pseudomonas aeruginosa. APMIS 122:92–100. https://doi.org/10.1111/apm.12112 PubMed DOI
Michalska M, Wolf P (2015) Pseudomonas exotoxin A: optimized by evolution for effective killing. Front Microbiol 6:963. https://doi.org/10.3389/fmicb.2015.00963 PubMed DOI PMC
Mosharaf MK, Tanvir MZH, Haque MM, Haque MA, Khan MAA, Molla AH, Alam MZ, Islam MS, Talukder MR (2018) Metal-adapted bacteria isolated from wastewaters produce biofilms by expressing proteinaceous curli fimbriae and cellulose nanofibers. Front Microbiol 9:1334. https://doi.org/10.3389/fmicb.2018.01334
Najafi K, Kafil HS, Shokrian S, Azimi S, Asgharzadeh M, Yousefi M, Aghazadeh M (2015) Virulence genes and antibiotic resistance profile of Pseudomonas aeruginosa isolates in Northwest of Iran. J Pure Appl Microbiol 9:383–389
Nguyen CC, Hugie CN, Kile ML, Daneshmand TN (2019) Association between heavy metals and antibiotic-resistant human pathogens in environmental reservoirs: a review. Front Environ Sci Eng 13(3):46. https://doi.org/10.1007/s11783-019-1129-0 DOI
Pitondo-Silva A, Goncalves GB, Stehling EG (2016) Heavy metal resistance and virulence profile in Pseudomonas aeruginosa isolated from Brazilian soils. APMIS 124:681–688. https://doi.org/10.1111/apm.12553 PubMed DOI
Pournajaf A, Razavi S, Irajian G, Ardebili A, Erfani Y, Solgi S, Yaghoubi S, Rasaeian A, Yahyapour Y, Kafshgari R, Shoja S, Rajabnia R (2018) Integron types, antimicrobial resistance genes, virulence gene profile, alginate production and biofilm formation in Iranian cystic fibrosis Pseudomonas aeruginosa isolates. Infez Med 26:226–236 PubMed
Qin X, Emerson J, Stapp J, Stapp L, Abe P, Burns JL (2003) Use of real-time PCR with multiple targets to identify Pseudomonas aeruginosa and other nonfermenting gram-negative bacilli from patients with cystic fibrosis. J Clin Microbiol 41:4312–4317. https://doi.org/10.1128/JCM.41.9.4312-4317.2003 PubMed DOI PMC
Rahim R, Ochsner UA, Olvera C, Graninger M, Messner P, Lam JS, Soberoan-Chaavez G (2001) Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Mol Microbiol 40:708–718. https://doi.org/10.1046/j.1365-2958.2001.02420.x PubMed DOI
Reis RS, Pereira AG, Neves BC, Freire DM (2011) Gene regulation of rhamnolipid production in Pseudomonas aeruginosa - a review. Bioresour Technol 102:6377-6384. https://doi.org/10.1016/j.biortech.2011.03.074
Rocha AJ, Barsottini MRDO, Laurindo MV, Moraes FLLD, Rocha SLD (2019) Pseudomonas aeruginosa: virulence factors and antibiotic resistance genes. Braz Arch Biol Technol 62:e19180503. https://doi.org/10.1590/1678-4324-2019180503 DOI
Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer directed enzymatic amplification of DNA with thermostable DNA polymerase. Science 239:487–491. https://doi.org/10.1126/science.239.4839.487 PubMed DOI
Schwartz T, Volkmann H, Kirchen S, Kohnen W, Schon-Holz K, Jansen B, Obst U (2006) Real-time PCR detection of Pseudomonas aeruginosa in clinical and municipal wastewater and genotyping of the ciprofloxacin-resistant isolates. FEMS Microbiol Ecol 57:158–167. https://doi.org/10.1111/j.1574-6941.2006.00100.x PubMed DOI
Silby MW, Winstanley C, Godfrey SA, Levy SB, Jackson RW (2011) Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev 35:652–680. https://doi.org/10.1111/j.1574-6976.2011.00269.x PubMed DOI
Skariyachan S, Sridhar VS, Packirisamy S, Kumargowda ST, Challapilli SB (2018) Recent perspectives on the molecular basis of biofilm formation by Pseudomonas aeruginosa and approaches for treatment and biofilm dispersal. Folia Microbiol 63:413–432. https://doi.org/10.1007/s12223-018-0585-4 DOI
Smibert RM, Krieg NR (1981) General characterization. In: Gerdhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Phillips GB (eds) Manual of methods for general bacteriology. Am Soc Microbiol Wash DC 409-443
Spilker T, Coenye T, Vandamme P, LiPuma JJ (2004) PCR-based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. J Clin Microbiol 42:2074–2079. https://doi.org/10.1128/jcm.42.5.2074-2079.2004 PubMed DOI PMC
Sree KK, Raja CE, Ramesh U (2018) Isolation and characterization of fluoride resistant bacteria from groundwaters in Dindigul, Tamilnadu, India. Environ Res Technol 1:69-74. https://dergipark.org.tr/en/pub/ert/issue/36278/402738
Stepanovic S, Vukovic D, Dakic I, Savic B, Svabic-Vlahovic M (2000) A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods 40:175–179. https://doi.org/10.1016/S0167-7012(00)00122-6 PubMed DOI
Stockbridge RB, Lim HH, Otten R, Williams C, Shane T, Weinberg Z, Miller C (2012) Fluoride resistance and transport by riboswitch-controlled CLC antiporters. Proc Natl Acad Sci U S A 109:15289–15294 DOI
Tekpor M, Akrong M, Asmah MH, Banu RA, Ansa EDO (2017) Bacteriological quality of drinking water in the Atebubu-Amantin district of the Brong-Ahafo region of Ghana. Appl Water Sci 7:2571–2576. https://doi.org/10.1007/s13201-016-0457-5 DOI
Todar K (2008) Todar’s online textbook of bacteriology. University of Wisconsin-Madison Department of Bacteriology
Wagner VE, Li LL, Isabella VM, Iglewski BH (2007) Analysis of the hierarchy of quorum-sensing regulation in Pseudomonas aeruginosa. Anal Bioanal Chem 387:469–479. https://doi.org/10.1007/s00216-006-0964-6 PubMed DOI
Wretlind B, Sjoberg L, Wadstrom T (1977) Protease-deficient mutants of Pseudomonas aeruginosa: pleiotropic changes in activity of other extracellular enzymes. J Gen Microbiol 103:329-336. https://doi.org/10.1099/00221287-103-2-329
Wunderink RG, Mendoza DL (2007) Epidemiology of Pseudomonas aeruginosa in the intensive care unit. In: Rello J, Kollef M, Díaz E, Rodríguez A (eds) Infectious diseases in critical care. Springer-Verlag, Berlin Heidelberg, pp 218–225 DOI