Influence of Artificially Generated Interocular Blur Difference on Fusion Stability Under Vergence Stress
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33828740
PubMed Central
PMC7880136
DOI
10.16910/jemr.12.4.4
Knihovny.cz E-zdroje
- Klíčová slova
- binocular fusion efficiency, binocular rivalry, blur balance, blur conflict, natural image statistics, signal strength, suppression, vergence demand,
- Publikační typ
- časopisecké články MeSH
The stability of fusion was evaluated by its breakage when interocular blur differences were presented under vergence demand to healthy subjects. We presumed that these blur differences cause suppression of the more blurred image (interocular blur suppression, IOBS), disrupt binocular fusion and suppressed eye leaves its forced vergent position. During dichoptic presentation of static grayscale images of natural scenes, the luminance contrast (mode B) or higher-spatial frequency content (mode C) or luminance contrast plus higher-spatial frequency content (mode A) were stepwise reduced in the image presented to the non-dominant eye. We studied the effect of these types of blur on fusion stability at various levels of the vergence demand. During the divergence demand, the fusion was disrupted with approximately half blur than during convergence. Various modes of blur influenced fusion differently. The mode C (isolated reduction of higher-spatial frequency content) violated fusion under the lowest vergence demand significantly more than either isolated or combined reduction of luminance contrast (mode B and A). According to our results, the image´s details (i.e. higher-spatial frequency content) protects binocular fusion from disruption by the lowest vergence demand.
Center of Paediatric Ophthalmology BINOCULAR Litomysl; Czech Republic
École Polytechnique Fédérale de Lausanne; Switzerland
Masaryk University Faculty of Medicine Dept Optometry and Orthoptics Brno Czech Republic
Masaryk University Faculty of Medicine Dept Pediatric Ophthalmology Brno Czech Republic
Masaryk University Faculty of Medicine Institute of Biostatistics and Analyses Brno Czech Republic
Zobrazit více v PubMed
Pratt-Johnson, J. A., Tillson, G. (2001). Management of Strabismus and Amblyopia. A Practical Guide. 2nd ed. New York: Thieme New York. 307 p.
Howard I. P., Rogers B. J. (1995). Binocular Vision and Stereopsis. Oxford University Press. 62-68
Wheatstone C. (1838). Contributions to the Physiology of Vision. Part the First. On Some Remarkable, and Hitherto Unobserved, Phenomena of Binocular Vision. Philosophical Transactions of the Royal Society of London. 128, 371-394. Available from: https://doi.org/10.1098/rstl.1838.0019 DOI
Sterzer P., Stein T., Ludwig K., Rothkirch M., Hesselmann G. (2014). Neural processing of visual information under interocular suppression: a critical review. Frontiers in Psychology. 5, pages: 453. Available from: https://doi.org/10.3389/fpsyg.2014.00453 PubMed DOI PMC
De Cesarei A., Mastria S., Codispoti M. (2013). Early Spatial Frequency Processing of Natural Images: An ERP Study. PLoS ONE. 8(5), e65103. Available from: https://doi.org/10.1371/journal.pone.0065103 PubMed DOI PMC
Buckthought A., Jessula S., Mendola J. D. (2011). Bistable Percepts in the Brain: fMRI Contrasts Monocular Pattern Rivalry and Binocular Rivalry. PLoS ONE. 6(5), e20367. Available from: https://doi.org/10.1371/journal.pone.0020367 PubMed DOI PMC
Jaworska K., Lages M. (2014). Fluctuations of visual awareness: Combining motion-induced blindness with binocular rivalry. Journal of Vision. 14(11), 11. Available from: https://doi.org/10.1167/14.11.11 PubMed DOI PMC
Van Boxtel J. J., Van Ee R., Erkelens C. J. (2007. Nov). Dichoptic masking and binocular rivalry share common perceptual dynamics. Journal of Vision. 7(14), 1–-11.. Available from: https://doi.org/10.1167/7.14.3 PubMed DOI
Baker, D. H., Graf, E. W. (2009. Feb 20). On the relation between dichoptic masking and binocular rivalry. Vision Res. 49(4), 451–459. Available from: https://doi.org/10.1016/j.visres.2008.12.002 PubMed DOI
Baker D. H., Meese T. S. (2007). Binocular contrast interactions: Dichoptic masking is not a single process. Vision Research. 47(24), 3096-3107. Available from: https://doi.org/10.1016/j.visres.2007.08.013 PubMed DOI
Huang, P. C., Baker, D. H., Hess, R. F. (2012. Oct). Interocluar suppression in normal and amblyopic vision: spatiotemporal properties. J Vis. 12(11), 29. Available from: https://doi.org/10.1167/12.11.29 PubMed DOI
Chima A. S., Formankiewicz M. A., Waugh S. J. (2015. Mar). Investigation of interocular blur suppression using luminance-modulated and contrast-modulated noise stimuli. Journal of Vision. 15(3), 1-22. Available from: https://doi.org/10.1167/15.3.22 PubMed DOI
Abadi, R. V. (1976). Introduction masking: a study of some inhibitory interactions during dichoptic viewing. Vision Res. 16(3), 269–275. Available from: https://doi.org/10.1016/0042-6989(76)90110-3 PubMed DOI
Legge, G. E. (1979). Spatial frequency masking in human vision: binocular interactions. J Opt Soc Am. 69(6), 838–847. Available from: https://doi.org/10.1364/JOSA.69.000838 PubMed DOI
Harrad R, Sengpiel F, Blakemore C (1996). Physiology of suppression in strabismic amblyopia.. British Journal of Ophthalmology. 80(4), 373-377. Available from: https://doi.org/10.1136/bjo.80.4.373 PubMed DOI PMC
Harrad R. (1996). Psychophysics of suppression. Eye. 10(2), 270-273. Available from: https://doi.org/10.1038/eye.1996.57 PubMed DOI
Baker, D. H., Graf, E. W. (2009. Mar 31). Natural images dominate in binocular rivalry. Proc Natl Acad Sci USA. 106(13), 5436–5441. Available from: https://doi.org/10.1073/pnas.0812860106 PubMed DOI PMC
Kompaniez E., Sawides L., Marcos S., Webster M. A. (2013. May). Adaptation to interocular differences in blur. Journal of Vision. 13(6), 19. Available from: https://doi.org/10.1167/13.6.19 PubMed DOI PMC
Webster, M. A., Georgeson, M. A., Webster, S. M. (2002. Aug 26). Natural adjustments to image blur. Nat Neurosci. 5(9), 839–840. Available from: https://doi.org/10.1038/nn906 PubMed DOI
Li, J., Hess, R. F., Chan, L. Y., Deng, D., Yang, X., Chen, X., et al. (2013. Aug). Quantitative measurement of interocular suppression in anisometropic amblyopia: a case-control study. Ophthalmology. 120(8), 1672–1680. Available from: https://doi.org/10.1016/j.ophtha.2013.01.048 PubMed DOI
Žiak P., Holm A., Halička J., Mojžiš P., Piñero D. P (2017. Jun). Amblyopia treatment of adults with dichoptic training using the virtual reality Oculus Rift head mounted display: preliminary results. BMC Ophthalmology. 17(1), 105. Available from: https://doi.org/10.1186/s12886-017-0501-8 PubMed DOI PMC
Dostálek, M., Fliegel, K., Hozman, J., Autrata, R., Lukeš, T., Dušek, L., et al. (2015). Gradation of subjective and objective parameters of the Bangerter's filters. In: Ciolean, D. E., editor. Transactions of the 37th European Strabismological Association (ESA) Meeting. Bucharest: European Strabismological Association c/o Corint Boooks. p. 329-332.
Dostálek, M. (2012). Difuzní lišta pro měření binokulární rovnováhy. Industrial Property Office of the Czech Republic. The utility model 23815. Available from: https://isdv.upv.cz/doc/FullFiles/UtilityModels/FullDocuments/FDUM0023/uv023815.pdf
Mannos J. L., Sakrison D. J. (1974. Jul). The effects of a visual fidelity criterion of the encoding of images. IEEE Transactions on Information Theory. 20(4), 525-536. Available from: https://doi.org/10.1109/tit.1974.1055250 DOI
Hozman, J., Dostálek, M., Hejda, J. (2013). Haploskop. Industrial Property Office of the Czech Republic. The utility model CZ 25479. Available from: https://isdv.upv.cz/doc/FullFiles/UtilityModels/FullDocuments/FDUM0025/uv025479.pdf
Dostálek, M., Betlachová, P., Autrata, R. (2013). Dichoptic contrast masking during relative convergence training. In: Haugen, O. H., editor. Transactions of the 35th European Strabismological Association (ESA) Meeting. Bergen: ESA. p. 149-152.
Dostalek, M., Petriščáková, M., Dušek, J. (2009). Síla senzorické fúze v závislosti na velikosti relativní vergence: pilotní metodologická studie. Folia strabologica et neuroophthalmologica. 11(Supplementum I.), 64-68.
Dušek J., Jindra T. (2012). Measuring Biomechanics of the Vision Process, Sensory Fusion and Image Observation Features. In: Natal Jorge R. M., Tavares, J., Pinotti Barbosa, M., Slade, A., editors. Technologies for Medical Science. Springer Netherlands; 1, 87-112. Available from: https://doi.org/10.1007/978-94-007-4068-6_5 DOI
Baker D.H., Meese T.S., Summers R.J. (2007. Apr). Psychophysical evidence for two routes to suppression before binocular summation of signals in human vision. Neuroscience. 146(1), 435-448. Available from: https://doi.org/10.1016/j.neuroscience.2007.01.030 PubMed DOI
Arnold, D. H. (2011. Oct 19). Why is binocular rivalry uncommon? Discrepant monocular images in the real world. Front Hum Neurosci. 5, 116. Available from: https://doi.org/10.3389/fnhum.2011.00116 PubMed DOI PMC
Hoffmann, D., Banks, M. (2010. May). Focus information is used to interpret binocular images. J Vis. 10(5), 13. Available from: https://doi.org/10.1167/10.5.13 PubMed DOI PMC
Collins, M. J., Goode, A. (1994. Jun). Interocular blur suppresion and monovision. Acta Ophthalmol (Copenh). 72(3), 376–380. Available from: https://doi.org/10.1111/j.1755-3768.1994.tb02777.x PubMed DOI
Cotter, S. A., Pediatric-Eye-Disease-Investigator-Group, Edwards, A. R., Wallace, D. K., Beck, R. W., Arnold, R. W., et al. (2006. Jun). Treatment of anisometropic amblyopia in children with refractive correction. Ophthalmology. 113(6), 895–903. Available from: https://doi.org/10.1016/j.ophtha.2006.01.068 PubMed DOI PMC
Lai, X. J., Alexander, J., He, M., Yang, Z., Suttle, C. (2011. Aug). Visual functions and interocular interactions in anisometropic children and without amblyopia. Invest Ophthalmol Vis Sci. 52(9), 6849–6859. Available from: https://doi.org/10.1167/iovs.10-6755 PubMed DOI
Reynaud, A., Hess, R. F. (2016. Oct). Is suppression just normal dichoptic masking? Suprathreshold considerations. Invest Ophthalmol Vis Sci. 57(13), 5107–5115. Available from: https://doi.org/10.1167/iovs.16-19682 PubMed DOI
Schor, C. M., Heckmann, T. (1989). Interocular differences in contrast and spatial frequency: effects on stereopsis and fusion. Vision Res. 29(7), 837–847. Available from: https://doi.org/10.1016/0042-6989(89)90095-3 PubMed DOI
Julesz, B., Miller, J. E. (1975. Jun 1). Independent spatial-frequency-tuned chanels in binocular fusion and rivalry. Perception. 4(2), 125–143. Available from: http://dx.doi.org/10.1068/p040125 DOI
Breitmeyer B. G., Ganz L. (1976. Jan). Implications of sustained and transient channels for theories of visual pattern masking, saccadic suppression, and information processing.. Psychological Review. 83(1), 1-36. Available from: https://doi.org/10.1037//0033-295x.83.1.1 PubMed DOI
Macknik, S. L., Martinez-Conde, S. (2007). The role of feedback in visual masking and visual processing. Advances in Cognitive Psychology. 3(1-2), 125–152. Available from: https://doi.org/10.2478/v10053-008-0020-5 PubMed DOI PMC
Keysers, C., Perrett, D. I. (2002. Mar 1). Visual masking and RSVP reveal neural competition. Trends Cogn Sci. 6(3), 120–125. Available from: https://doi.org/10.1016/S1364-6613(00)01852-0 PubMed DOI
Hughes H. C., Nozawa G., Kitterle F. (1996). Global Precedence, Spatial Frequency Channels, and the Statistics of Natural Images. Journal of Cognitive Neuroscience. 8(3), 197-230. Available from: https://doi.org/10.1162/jocn.1996.8.3.197 PubMed DOI
Bar M. (2004). Visual objects in context. Nature Reviews Neuroscience. 5(8), 617-629. Available from: https://doi.org/10.1038/nrn1476 PubMed DOI
Navon, D. (1977. Jul). Forest before trees: the precedence of global features in visual perception. Cogn Psychol. 9(3), 353–383. Available from: https://doi.org/10.1016/0010-0285(77)90012-3 DOI
Kauffmann, L., Ramanoel, S., Peyrin, C. (2014. May 7). The neural bases of spatial frequency processing during scene perception. Front Integr Neurosci. 8, 37. Available from: https://doi.org/10.3389/fnint.2014.00037 PubMed DOI PMC
De Cesarei, A., Loftus, G. R. (2011. Oct). Global and local vision in natural scene identification. Psychol Bull Rev. 18(5), 840–847. Available from: https://doi.org/10.3758/s13423-011-0133-6 PubMed DOI
Bullier, J. (2001. Oct). Integrated model of visual processing. Brain Res Brain Res Rev. 36(2-3), 96–107. Available from: https://doi.org/10.1016/S0165-0173(01)00085-6 PubMed DOI
Collewijn, H., Steinman, R. M., Erkelens, C. J., Regan, D. (1991). Binocular fusion, stereopsis and stereoacuity with a moving head. In: Cronly-Dilon, J., editor. Vision and Visual Dysfunction Macmillan, p. 121-136.
Blakemore, C. (1970. Dec 1). The range and scope of binocular discrimination in man. J Physiol. 211, 599-622. Available from: https://doi.org/10.1113/jphysiol.1970.sp009296 PubMed DOI PMC
Abd-Manan, F. (2000. Jul). The effect of induced visual stress on three dimensional perception. Malays J Med Sci. 7(2), 18–26. PubMed PMC
Laird, P. W., Hatt, S. R., Leske, D. A., Holmes, J. M. (2008. Aug). Distance stereoacuity in prism-induced convergence stress. J AAPOS. 12(4), 370–374. Available from: https://doi.org/10.1016/j.jaapos.2008.01.013 PubMed DOI PMC
Laird, P. W., Hatt, S. R., Leske, D. A., Holmes, J. M. (2007. Aug). Stereoacuity and binocular visual acuity in prism-induced exodeviation. J AAPOS. 11(4), 362-366. Available from: https://doi.org/10.1016/j.jaapos.2007.01.116 PubMed DOI PMC
Hyson, M. T., Julesz B., Fender, D. H. (1983). Eye movements and neural remapping during fusion of misaligned random dot stereograms. J Opt Soc Am. 73(12), 1665-1673. Available from: https://doi.org/10.1364/JOSA.73.001665 PubMed DOI