Metamorphic microdiamond formation is controlled by water activity, phase transitions and temperature
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
33833325
PubMed Central
PMC8032753
DOI
10.1038/s41598-021-87272-1
PII: 10.1038/s41598-021-87272-1
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Metamorphic diamonds hosted by major and accessory phases in ultrahigh-pressure (UHP) metamorphic terranes represent important indicators of deep subduction and exhumation of continental crust at convergent plate boundaries. However, their nucleation and growth mechanisms are not well understood due to their small size and diversity. The Bohemian microdiamond samples represent a unique occurrence of monocrystalline octahedral and polycrystalline cubo-octahedral microdiamonds in two different metasedimentary rock types. By combining new and published data on microdiamonds (morphology, resorption, associated phases, carbon isotope composition) with P-T constraints from their host rocks, we demonstrate that the peak P-T conditions for the diamond-bearing UHP rocks cluster along water activity-related phase transitions that determine the microdiamond features. With increasing temperature, the diamond-forming medium changes from aqueous fluid to hydrous melt, and diamond morphology evolves from cubo-octahedral to octahedral. The latter is restricted to the UHP-UHT rocks exceeding 1100 °C, which is above the incongruent melting of phengite, where microdiamonds nucleate along a prograde P-T path in silicate-carbonate hydrous melt. The observed effect of temperature on diamond morphology supports experimental data on diamond growth and can be used for examining growth conditions of cratonic diamonds from kimberlites, which are dominated by octahedra and their resorbed forms.
Czech Geological Survey Klárov 3 118 21 Prague 1 Czech Republic
Department of Earth and Environmental Sciences Dalhousie University Halifax NS B3H 4R2 Canada
Department of Geological Sciences Masaryk University Kotlářská 2 611 37 Brno Czech Republic
Department of Geosciences Swedish Museum of Natural History Box 50007 104 05 Stockholm Sweden
Zobrazit více v PubMed
Dobrzhinetskaya LF. Microdiamonds—frontier of ultrahigh-pressure metamorphism: a review. Gondwana Res. 2012;21:207–223. doi: 10.1016/j.gr.2011.07.014. DOI
Korsakov AV, et al. Diamond-graphite relationships in ultrahigh-pressure metamorphic rocks from the Kokchetav Massif, Northern Kazakhstan. J. Petrol. 2010;51:763–783. doi: 10.1093/petrology/egq001. DOI
Cartigny P, Palot M, Thomassot E, Harris JW. Diamond formation: a stable isotope perspective. Annu. Rev. Earth Planet. Sci. 2014;42:699–732. doi: 10.1146/annurev-earth-042711-105259. DOI
Dobrzhinetskaya LF, Wirth R, Green HW. A look inside of diamond-forming media in deep subduction zones. Proc. Natl. Acad. Sci. U. S. A. 2007;104:9128–9132. doi: 10.1073/pnas.0609161104. PubMed DOI PMC
Dobrzhinetskaya LF, Wirth R, Green HW, Schreiber A, Obannon E. First find of polycrystalline diamond in ultrahigh-pressure metamorphic terrane of Erzgebirge, Germany. J. Metamorph. Geol. 2013;31:5–18. doi: 10.1111/jmg.12010. DOI
Frezzotti ML, Selverstone J, Sharp ZD, Compagnoni R. Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps. Nat. Geosci. 2011;4:703–706. doi: 10.1038/ngeo1246. DOI
Janak M, et al. Discovery of diamond in the Tromso Nappe, Scandinavian Caledonides (N. Norway) J. Metamorph. Geol. 2013;31:691–703. doi: 10.1111/jmg.12040. DOI
Klonowska I, et al. Microdiamond on Åreskutan confirms regional UHP metamorphism in the Seve Nappe Complex of the Scandinavian Caledonides. J. Metamorph. Petrol. 2017;35:541–564. doi: 10.1111/jmg.12244. DOI
Majka J, et al. Microdiamond discovered in the Seve Nappe (Scandinavian Caledonides) and its exhumation by the "vacuum-cleaner" mechanism. Geology. 2014;42:1107–1110. doi: 10.1130/G36108.1. DOI
Janak M, et al. Diamond in metasedimentary crustal rocks from Pohorje, Eastern Alps: a window to deep continental subduction. J. Metamorph. Geol. 2015;33:495–512. doi: 10.1111/jmg.12130. DOI
Petrik I, et al. Triassic to Early Jurassic (c.200Ma) UHP metamorphism in the Central Rhodopes: evidence from U-Pb-Th dating of monazite in diamond-bearing gneiss from Chepelare (Bulgaria) J. Metamorph. Geol. 2016;34:265–291. doi: 10.1111/jmg.12181. DOI
Dobrzhinetskaya LF, Green HW, Mitchell TE, Dickerson RM. Metamorphic diamonds: mechanism of growth and inclusion of oxides. Geology. 2001;29:263–266. doi: 10.1130/0091-7613(2001)029<0263:MDMOGA>2.0.CO;2. DOI
Korsakov AV, Theunissen K, Smirnova LV. Intergranular diamonds derived from partial melting of crustal rocks at ultrahigh-pressure metamorphic conditions. Terra Nova. 2004;16:146–151. doi: 10.1111/j.1365-3121.2004.00547.x. DOI
Mikhno AO, Musiyachenko KA, Shchepetova OV, Korsakov AV, Rashchenko SV. CO2-bearing fluid inclusions associated with diamonds in zircon from the UHP Kokchetav gneisses. J. Raman Spectrosc. 2017;48:1566–1573. doi: 10.1002/jrs.5139. DOI
Korsakov AV, Shatsky VS, Sobolev NV, Zayachokovsky AA. Garnet-biotite-clinozoisite gneiss: a new type of diamondiferous metamorphic rock from the Kokchetav Massif. Eur. J. Mineral. 2002;14:915–928. doi: 10.1127/0935-1221/2002/0014-0915. DOI
Korsakov AV, Vandenabeele P, Theunissen K. Discrimination of metamorphic diamond populations by Raman spectroscopy (Kokchetav, Kazakhstan) Spectrochim. Acta A. 2005;61:2378–2385. doi: 10.1016/j.saa.2005.02.016. PubMed DOI
Stockhert B, Duyster J, Trepmann C, Massonne HJ. Microdiamond daughter crystals precipitated from supercritical COH plus silicate fluids included in garnet, Erzgebirge, Germany. Geology. 2001;29:391–394. doi: 10.1130/0091-7613(2001)029<0391:MDCPFS>2.0.CO;2. DOI
Massonne HJ, Kennedy A, Nasdala L, Theye T. Dating of zircon and monazite from diamondiferous quartzofeldspathic rocks of the Saxonian Erzgebirge—hints at burial and exhumation velocities. Mineral. Mag. 2007;71:407–425. doi: 10.1180/minmag.2007.071.4.407. DOI
Zhang RY, Liou JG, Lo CH. Raman spectra of polycrystalline microdiamond inclusions in zircons, and ultrahigh-pressure metamorphism of a quartzofeldspathic rock from the Erzgebirge terrane, Germany. Int. Geol. Rev. 2017;59:779–792. doi: 10.1080/00206814.2016.1271366. DOI
Kotkova J, O'Brien PJ, Ziemann MA. Diamond and coesite discovered in Saxony-type granulite: solution to the Variscan garnet peridotite enigma. Geology. 2011;39:667–670. doi: 10.1130/G31971.1. DOI
Haifler J, Kotkova J. UHP-UHT peak conditions and near-adiabatic exhumation path of diamond-bearing garnet-clinopyroxene rocks from the Eger Crystalline Complex, North Bohemian Massif. Lithos. 2016;248:366–381. doi: 10.1016/j.lithos.2016.02.001. DOI
Kotkova J, Whitehouse M, Schaltegger U, D'Abzac FX. The fate of zircon during UHT-UHP metamorphism: isotopic (U/Pb, δ18O, Hf) and trace element constraints. J. Metamorph. Geol. 2016;34:719–739. doi: 10.1111/jmg.12206. DOI
Kotkova, J. Tectonometamorphic history of lower crust in the Bohemian Massif—example of north Bohemian granulites. 42 (1993).
Kotkova J. High pressure granulites of the Bohemian Massif; recent advances and open questions. J. Geosci. 2007;52:45–71.
Medaris LG, Jr, et al. Depletion, cryptic metasomatism, and modal metasomatism (refertilization) of Variscan lithospheric mantle; evidence from major elements, trace elements, and Sr-Nd-Os isotopes in a Saxothuringian garnet peridotite. Lithos (Oslo) 2015;226:81–97. doi: 10.1016/j.lithos.2014.10.007. DOI
Reinecke T. Prograde high- to ultrahigh-pressure metamorphism and exhumation of oceanic sediments at Lago di Cignana, Zermatt-Saas Zone, western Alps. Lithos. 1998;42:147–189. doi: 10.1016/S0024-4937(97)00041-8. DOI
Groppo C, Beltrando M, Compagnoni R. The P-T path of the ultra-high pressure Lago Di Cignana and adjoining high-pressure meta-ophiolitic units: insights into the evolution of the subducting Tethyan slab. J. Metamorph. Geol. 2009;27:207–231. doi: 10.1111/j.1525-1314.2009.00814.x. DOI
Stepanov AS, Hermann J, Rubatto D, Korsakov AV, Danyushevsky LV. Melting history of an ultrahigh-pressure paragneiss revealed by multiphase solid inclusions in garnet, Kokchetav Massif, Kazakhstan. J. Petrol. 2016;57:1531–1554.
Massonne HJ, Fockenberg T. Melting of metasedimentary rocks at ultrahigh pressure-Insights from experiments and thermodynamic calculations. Lithosphere-Us. 2012;4:269–285. doi: 10.1130/L185.1. DOI
Pal'yanov N, Sokol AG, Borzdov M, Khokhryakov AF. Fluid-bearing alkaline carbonate melts as the medium for the formation of diamonds in the Earth's mantle: an experimental study. Lithos. 2002;60:145–159. doi: 10.1016/S0024-4937(01)00079-2. DOI
Bureau H, et al. The growth of fibrous, cloudy and polycrystalline diamonds. Geochim. Cosmochim. Acta. 2012;77:202–214. doi: 10.1016/j.gca.2011.11.016. DOI
Fedortchouk Y, Liebske C, McCammon C. Diamond destruction and growth during mantle metasomatism; an experimental study of diamond resorption features. Earth Planet. Sci. Lett. 2019;506:493–506. doi: 10.1016/j.epsl.2018.11.025. DOI
Zhang ZH, Fedortchouk Y, Hanley JJ. Evolution of diamond resorption in a silicic aqueous fluid at 1–3 GPa: application to kimberlite emplacement and mantle metasomatism. Lithos. 2015;227:179–193. doi: 10.1016/j.lithos.2015.04.003. DOI
Zhang ZH, Fedortchouk Y, Hanley JJ, Kerr M. Diamond resorption and immiscibility of C–O–H fluid in kimberlites: evidence from experiments in H2O–CO2–SiO2–MgO–CaO system at 1–3 GPa. Lithos. 2021;380–381:105858. doi: 10.1016/j.lithos.2020.105858. DOI
Li ZY, Fedortchouk Y, Fulop A, Chinn IL, Forbes N. Positively oriented trigons on diamonds from the Snap Lake kimberlite dike, Canada: Implications for fluids and kimberlite cooling rates. Am. Mineral. 2018;103:1634–1648. doi: 10.2138/am-2018-6496. DOI
Hermann, J. & Rubatto, D. in Treatise on Geochemistry (eds H.D. Holland & K.K. Turekian) 309–340 (Elsevier, 2014).
Hermann J, Spandler C. Sediment melts at sub-arc depths: an experimental study. J. Petrol. 2008;49:717–740. doi: 10.1093/petrology/egm073. DOI
Shirey SB, et al. Diamonds and the geology of mantle carbon. Rev. Mineral. Geochem. 2013;75:355–421. doi: 10.2138/rmg.2013.75.12. DOI
Schidlowski M. Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. Precambrian Res. 2001;106:117–134. doi: 10.1016/S0301-9268(00)00128-5. DOI
Buseck PR, Beyssac O. From organic matter to graphite: graphitization. Elements. 2014;10:421–426. doi: 10.2113/gselements.10.6.421. DOI
Irifune T, Kurio A, Sakamoto S, Inoue T, Sumiya H. Materials—ultrahard polycrystalline diamond from graphite. Nature. 2003;421:599–600. doi: 10.1038/421599b. PubMed DOI
Girnis AV, Brey GP, Bulatov VK, Hoefer HE, Woodland AB. Graphite to diamond transformation during sediment-peridotite interaction at 7.5 and 10.5 GPa. Lithos. 2018;310–311:302–313. doi: 10.1016/j.lithos.2018.04.010. DOI
Schmidt MW, Vielzeuf D, Auzanneau E. Melting and dissolution of subducting crust at high pressures: the key role of white mica. Earth Planet. Sci. Lett. 2004;228:65–84. doi: 10.1016/j.epsl.2004.09.020. DOI
Grassi D, Schmidt MW. The melting of carbonated pelites from 70 to 700 km depth. J. Petrol. 2011;52:765–789. doi: 10.1093/petrology/egr002. DOI
Thomsen TB, Schmidt MW. Melting of carbonated pelites at 2.5–5.0 GPa, silicate-carbonatite liquid immiscibility, and potassium–carbon metasomatism of the mantle. Earth Planet. Sci. Lett. 2008;267:17–31. doi: 10.1016/j.epsl.2007.11.027. DOI
Pal'yanov YN, Sokol AG, Borzdov YM, Khokhryakov AF, Sobolev NV. Diamond formation from mantle carbonate fluids. Nature. 1999;400:417–418. doi: 10.1038/22678. PubMed DOI
Day HW. A revised diamond-graphite transition curve. Am. Mineral. 2012;97:52–62. doi: 10.2138/am.2011.3763. DOI
Sitnikova ES, Shatsky VS. New FTIR spectroscopy data on the composition of the medium of diamond crystallization in metamorphic rocks of the Kokchetav Massif. Russ. Geol. Geophys. 2009;50:842–849. doi: 10.1016/j.rgg.2009.09.002. DOI
Yoshioka T, Nakashima D, Nakamura T, Shcheka S, Keppler H. Carbon solubility in silicate melts in equilibrium with a CO-CO2 gas phase and graphite. Geochim. Cosmochim. Acta. 2019;259:129–143. doi: 10.1016/j.gca.2019.06.007. DOI
Pechnikov VA, Kaminsky FV. Diamond potential of metamorphic rocks in the Kokchetav Massif, northern Kazakhstan. Eur. J. Mineral. 2008;20:395–413. doi: 10.1127/0935-1221/2008/0020-1813. DOI
Hwang S-L, et al. Nanometer-size P/K-rich silica glass (former melt) inclusions in microdiamond from the gneisses of Kokchetav and Erzgebirge massifs; diversified characteristics of the formation media of metamorphic microdiamond in UHP rocks due to host-rock buffering. Earth Planet. Sci. Lett. 2006;243:94–106. doi: 10.1016/j.epsl.2005.12.015. DOI
Dobrzhinetskaya LF, Green HW, Takahata N, Sano Y, Shirai K. Crustal signature of delta C-13 and nitrogen content in microdiamonds from Erzgebirge, Germany: Ion Microprobe Studies. J. Earth Sci.-China. 2010;21:623–634. doi: 10.1007/s12583-010-0129-6. DOI
Labrousse L, Duretz T, Gerya T. H2O-fluid-saturated melting of subducted continental crust facilitates exhumation of ultrahigh-pressure rocks in continental subduction zones. Earth Planet. Sci. Lett. 2015;428:151–161. doi: 10.1016/j.epsl.2015.06.016. DOI
Fedortchouk Y, Canil D, Semenets E. Mechanisms of diamond oxidation and their hearing on the fluid composition in kimberlite magmas. Am. Mineral. 2007;92:1200–1212. doi: 10.2138/am.2007.2416. DOI
Sunagawa, I. Crystals—Growth, Morphology and Perfection. (Cambridge University Press, 2005).
Palyanov YN, Sokol AG. The effect of composition of mantle fluids/melts on diamond formation processes. Lithos. 2009;112:690–700. doi: 10.1016/j.lithos.2009.03.018. DOI
Giardini AA, Tydings JE. Diamond synthesis: observations on the mechanism of formation. Am. Mineral. 1962;47:1393–1421.
Yamaoka S, Komatsu H, Kanda H, Setaka N. Growth of diamond with rhombic dodecahedral faces. J. Cryst. Growth. 1977;37:349–352. doi: 10.1016/0022-0248(77)90131-2. DOI
Palyanov YN, Khokhryakov AF, Borzdov YM, Kupriyanov IN. Diamond growth and morphology under the influence of impurity adsorption. Cryst. Growth Des. 2013;13:5411–5419. doi: 10.1021/cg4013476. DOI
Gurney JJ, Hildebrand PR, Carlson JA, Fedortchouk Y, Dyck DR. The morphological characteristics of diamonds from the Ekati property, Northwest Territories, Canada. Lithos. 2004;77:21–38. doi: 10.1016/j.lithos.2004.04.033. DOI
Harris JW, Hawthorne JB, Oosterveld MM. 4th International Kimberlite Conference 395–397. Geological Society of Australia; 1986.
Stachel T, Luth RW. Diamond formation—where, when and how? Lithos. 2015;220:200–220. doi: 10.1016/j.lithos.2015.01.028. DOI
Nečas D, Klapetek P. Gwyddion: an open-source software for SPM data analysis. Cent. Eur. J. Phys. 2012;10:181–188.
Wirth R. Focused ion beam (FIB); a novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy. Eur. J. Mineral. 2004;16:863–876. doi: 10.1127/0935-1221/2004/0016-0863. DOI
Wirth R, Gerdes A, Kemp AIS, Hanchar JM, Schersten A. Focused ion beam (FIB) combined with SEM and TEM; advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale. Chem. Geol. 2009;261:217–229. doi: 10.1016/j.chemgeo.2008.05.019. DOI
Nemchin AA, et al. A light carbon reservoir recorded in zircon-hosted diamond from the Jack Hills. Nature (London) 2008;454:92–95. doi: 10.1038/nature07102. PubMed DOI
Harte B, Fitzsimons ICW, Harris JW, Otter ML. Carbon isotope ratios and nitrogen abundances in relation to cathodoluminescence characteristics for some diamonds from the Kaapvaal Province, S. Africa. Mineral. Mag. 1999;63:829–856. doi: 10.1180/002646199548961. DOI