Metamorphic microdiamond formation is controlled by water activity, phase transitions and temperature

. 2021 Apr 08 ; 11 (1) : 7694. [epub] 20210408

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33833325
Odkazy

PubMed 33833325
PubMed Central PMC8032753
DOI 10.1038/s41598-021-87272-1
PII: 10.1038/s41598-021-87272-1
Knihovny.cz E-zdroje

Metamorphic diamonds hosted by major and accessory phases in ultrahigh-pressure (UHP) metamorphic terranes represent important indicators of deep subduction and exhumation of continental crust at convergent plate boundaries. However, their nucleation and growth mechanisms are not well understood due to their small size and diversity. The Bohemian microdiamond samples represent a unique occurrence of monocrystalline octahedral and polycrystalline cubo-octahedral microdiamonds in two different metasedimentary rock types. By combining new and published data on microdiamonds (morphology, resorption, associated phases, carbon isotope composition) with P-T constraints from their host rocks, we demonstrate that the peak P-T conditions for the diamond-bearing UHP rocks cluster along water activity-related phase transitions that determine the microdiamond features. With increasing temperature, the diamond-forming medium changes from aqueous fluid to hydrous melt, and diamond morphology evolves from cubo-octahedral to octahedral. The latter is restricted to the UHP-UHT rocks exceeding 1100 °C, which is above the incongruent melting of phengite, where microdiamonds nucleate along a prograde P-T path in silicate-carbonate hydrous melt. The observed effect of temperature on diamond morphology supports experimental data on diamond growth and can be used for examining growth conditions of cratonic diamonds from kimberlites, which are dominated by octahedra and their resorbed forms.

Zobrazit více v PubMed

Dobrzhinetskaya LF. Microdiamonds—frontier of ultrahigh-pressure metamorphism: a review. Gondwana Res. 2012;21:207–223. doi: 10.1016/j.gr.2011.07.014. DOI

Korsakov AV, et al. Diamond-graphite relationships in ultrahigh-pressure metamorphic rocks from the Kokchetav Massif, Northern Kazakhstan. J. Petrol. 2010;51:763–783. doi: 10.1093/petrology/egq001. DOI

Cartigny P, Palot M, Thomassot E, Harris JW. Diamond formation: a stable isotope perspective. Annu. Rev. Earth Planet. Sci. 2014;42:699–732. doi: 10.1146/annurev-earth-042711-105259. DOI

Dobrzhinetskaya LF, Wirth R, Green HW. A look inside of diamond-forming media in deep subduction zones. Proc. Natl. Acad. Sci. U. S. A. 2007;104:9128–9132. doi: 10.1073/pnas.0609161104. PubMed DOI PMC

Dobrzhinetskaya LF, Wirth R, Green HW, Schreiber A, Obannon E. First find of polycrystalline diamond in ultrahigh-pressure metamorphic terrane of Erzgebirge, Germany. J. Metamorph. Geol. 2013;31:5–18. doi: 10.1111/jmg.12010. DOI

Frezzotti ML, Selverstone J, Sharp ZD, Compagnoni R. Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps. Nat. Geosci. 2011;4:703–706. doi: 10.1038/ngeo1246. DOI

Janak M, et al. Discovery of diamond in the Tromso Nappe, Scandinavian Caledonides (N. Norway) J. Metamorph. Geol. 2013;31:691–703. doi: 10.1111/jmg.12040. DOI

Klonowska I, et al. Microdiamond on Åreskutan confirms regional UHP metamorphism in the Seve Nappe Complex of the Scandinavian Caledonides. J. Metamorph. Petrol. 2017;35:541–564. doi: 10.1111/jmg.12244. DOI

Majka J, et al. Microdiamond discovered in the Seve Nappe (Scandinavian Caledonides) and its exhumation by the "vacuum-cleaner" mechanism. Geology. 2014;42:1107–1110. doi: 10.1130/G36108.1. DOI

Janak M, et al. Diamond in metasedimentary crustal rocks from Pohorje, Eastern Alps: a window to deep continental subduction. J. Metamorph. Geol. 2015;33:495–512. doi: 10.1111/jmg.12130. DOI

Petrik I, et al. Triassic to Early Jurassic (c.200Ma) UHP metamorphism in the Central Rhodopes: evidence from U-Pb-Th dating of monazite in diamond-bearing gneiss from Chepelare (Bulgaria) J. Metamorph. Geol. 2016;34:265–291. doi: 10.1111/jmg.12181. DOI

Dobrzhinetskaya LF, Green HW, Mitchell TE, Dickerson RM. Metamorphic diamonds: mechanism of growth and inclusion of oxides. Geology. 2001;29:263–266. doi: 10.1130/0091-7613(2001)029<0263:MDMOGA>2.0.CO;2. DOI

Korsakov AV, Theunissen K, Smirnova LV. Intergranular diamonds derived from partial melting of crustal rocks at ultrahigh-pressure metamorphic conditions. Terra Nova. 2004;16:146–151. doi: 10.1111/j.1365-3121.2004.00547.x. DOI

Mikhno AO, Musiyachenko KA, Shchepetova OV, Korsakov AV, Rashchenko SV. CO2-bearing fluid inclusions associated with diamonds in zircon from the UHP Kokchetav gneisses. J. Raman Spectrosc. 2017;48:1566–1573. doi: 10.1002/jrs.5139. DOI

Korsakov AV, Shatsky VS, Sobolev NV, Zayachokovsky AA. Garnet-biotite-clinozoisite gneiss: a new type of diamondiferous metamorphic rock from the Kokchetav Massif. Eur. J. Mineral. 2002;14:915–928. doi: 10.1127/0935-1221/2002/0014-0915. DOI

Korsakov AV, Vandenabeele P, Theunissen K. Discrimination of metamorphic diamond populations by Raman spectroscopy (Kokchetav, Kazakhstan) Spectrochim. Acta A. 2005;61:2378–2385. doi: 10.1016/j.saa.2005.02.016. PubMed DOI

Stockhert B, Duyster J, Trepmann C, Massonne HJ. Microdiamond daughter crystals precipitated from supercritical COH plus silicate fluids included in garnet, Erzgebirge, Germany. Geology. 2001;29:391–394. doi: 10.1130/0091-7613(2001)029<0391:MDCPFS>2.0.CO;2. DOI

Massonne HJ, Kennedy A, Nasdala L, Theye T. Dating of zircon and monazite from diamondiferous quartzofeldspathic rocks of the Saxonian Erzgebirge—hints at burial and exhumation velocities. Mineral. Mag. 2007;71:407–425. doi: 10.1180/minmag.2007.071.4.407. DOI

Zhang RY, Liou JG, Lo CH. Raman spectra of polycrystalline microdiamond inclusions in zircons, and ultrahigh-pressure metamorphism of a quartzofeldspathic rock from the Erzgebirge terrane, Germany. Int. Geol. Rev. 2017;59:779–792. doi: 10.1080/00206814.2016.1271366. DOI

Kotkova J, O'Brien PJ, Ziemann MA. Diamond and coesite discovered in Saxony-type granulite: solution to the Variscan garnet peridotite enigma. Geology. 2011;39:667–670. doi: 10.1130/G31971.1. DOI

Haifler J, Kotkova J. UHP-UHT peak conditions and near-adiabatic exhumation path of diamond-bearing garnet-clinopyroxene rocks from the Eger Crystalline Complex, North Bohemian Massif. Lithos. 2016;248:366–381. doi: 10.1016/j.lithos.2016.02.001. DOI

Kotkova J, Whitehouse M, Schaltegger U, D'Abzac FX. The fate of zircon during UHT-UHP metamorphism: isotopic (U/Pb, δ18O, Hf) and trace element constraints. J. Metamorph. Geol. 2016;34:719–739. doi: 10.1111/jmg.12206. DOI

Kotkova, J. Tectonometamorphic history of lower crust in the Bohemian Massif—example of north Bohemian granulites. 42 (1993).

Kotkova J. High pressure granulites of the Bohemian Massif; recent advances and open questions. J. Geosci. 2007;52:45–71.

Medaris LG, Jr, et al. Depletion, cryptic metasomatism, and modal metasomatism (refertilization) of Variscan lithospheric mantle; evidence from major elements, trace elements, and Sr-Nd-Os isotopes in a Saxothuringian garnet peridotite. Lithos (Oslo) 2015;226:81–97. doi: 10.1016/j.lithos.2014.10.007. DOI

Reinecke T. Prograde high- to ultrahigh-pressure metamorphism and exhumation of oceanic sediments at Lago di Cignana, Zermatt-Saas Zone, western Alps. Lithos. 1998;42:147–189. doi: 10.1016/S0024-4937(97)00041-8. DOI

Groppo C, Beltrando M, Compagnoni R. The P-T path of the ultra-high pressure Lago Di Cignana and adjoining high-pressure meta-ophiolitic units: insights into the evolution of the subducting Tethyan slab. J. Metamorph. Geol. 2009;27:207–231. doi: 10.1111/j.1525-1314.2009.00814.x. DOI

Stepanov AS, Hermann J, Rubatto D, Korsakov AV, Danyushevsky LV. Melting history of an ultrahigh-pressure paragneiss revealed by multiphase solid inclusions in garnet, Kokchetav Massif, Kazakhstan. J. Petrol. 2016;57:1531–1554.

Massonne HJ, Fockenberg T. Melting of metasedimentary rocks at ultrahigh pressure-Insights from experiments and thermodynamic calculations. Lithosphere-Us. 2012;4:269–285. doi: 10.1130/L185.1. DOI

Pal'yanov N, Sokol AG, Borzdov M, Khokhryakov AF. Fluid-bearing alkaline carbonate melts as the medium for the formation of diamonds in the Earth's mantle: an experimental study. Lithos. 2002;60:145–159. doi: 10.1016/S0024-4937(01)00079-2. DOI

Bureau H, et al. The growth of fibrous, cloudy and polycrystalline diamonds. Geochim. Cosmochim. Acta. 2012;77:202–214. doi: 10.1016/j.gca.2011.11.016. DOI

Fedortchouk Y, Liebske C, McCammon C. Diamond destruction and growth during mantle metasomatism; an experimental study of diamond resorption features. Earth Planet. Sci. Lett. 2019;506:493–506. doi: 10.1016/j.epsl.2018.11.025. DOI

Zhang ZH, Fedortchouk Y, Hanley JJ. Evolution of diamond resorption in a silicic aqueous fluid at 1–3 GPa: application to kimberlite emplacement and mantle metasomatism. Lithos. 2015;227:179–193. doi: 10.1016/j.lithos.2015.04.003. DOI

Zhang ZH, Fedortchouk Y, Hanley JJ, Kerr M. Diamond resorption and immiscibility of C–O–H fluid in kimberlites: evidence from experiments in H2O–CO2–SiO2–MgO–CaO system at 1–3 GPa. Lithos. 2021;380–381:105858. doi: 10.1016/j.lithos.2020.105858. DOI

Li ZY, Fedortchouk Y, Fulop A, Chinn IL, Forbes N. Positively oriented trigons on diamonds from the Snap Lake kimberlite dike, Canada: Implications for fluids and kimberlite cooling rates. Am. Mineral. 2018;103:1634–1648. doi: 10.2138/am-2018-6496. DOI

Hermann, J. & Rubatto, D. in Treatise on Geochemistry (eds H.D. Holland & K.K. Turekian) 309–340 (Elsevier, 2014).

Hermann J, Spandler C. Sediment melts at sub-arc depths: an experimental study. J. Petrol. 2008;49:717–740. doi: 10.1093/petrology/egm073. DOI

Shirey SB, et al. Diamonds and the geology of mantle carbon. Rev. Mineral. Geochem. 2013;75:355–421. doi: 10.2138/rmg.2013.75.12. DOI

Schidlowski M. Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. Precambrian Res. 2001;106:117–134. doi: 10.1016/S0301-9268(00)00128-5. DOI

Buseck PR, Beyssac O. From organic matter to graphite: graphitization. Elements. 2014;10:421–426. doi: 10.2113/gselements.10.6.421. DOI

Irifune T, Kurio A, Sakamoto S, Inoue T, Sumiya H. Materials—ultrahard polycrystalline diamond from graphite. Nature. 2003;421:599–600. doi: 10.1038/421599b. PubMed DOI

Girnis AV, Brey GP, Bulatov VK, Hoefer HE, Woodland AB. Graphite to diamond transformation during sediment-peridotite interaction at 7.5 and 10.5 GPa. Lithos. 2018;310–311:302–313. doi: 10.1016/j.lithos.2018.04.010. DOI

Schmidt MW, Vielzeuf D, Auzanneau E. Melting and dissolution of subducting crust at high pressures: the key role of white mica. Earth Planet. Sci. Lett. 2004;228:65–84. doi: 10.1016/j.epsl.2004.09.020. DOI

Grassi D, Schmidt MW. The melting of carbonated pelites from 70 to 700 km depth. J. Petrol. 2011;52:765–789. doi: 10.1093/petrology/egr002. DOI

Thomsen TB, Schmidt MW. Melting of carbonated pelites at 2.5–5.0 GPa, silicate-carbonatite liquid immiscibility, and potassium–carbon metasomatism of the mantle. Earth Planet. Sci. Lett. 2008;267:17–31. doi: 10.1016/j.epsl.2007.11.027. DOI

Pal'yanov YN, Sokol AG, Borzdov YM, Khokhryakov AF, Sobolev NV. Diamond formation from mantle carbonate fluids. Nature. 1999;400:417–418. doi: 10.1038/22678. PubMed DOI

Day HW. A revised diamond-graphite transition curve. Am. Mineral. 2012;97:52–62. doi: 10.2138/am.2011.3763. DOI

Sitnikova ES, Shatsky VS. New FTIR spectroscopy data on the composition of the medium of diamond crystallization in metamorphic rocks of the Kokchetav Massif. Russ. Geol. Geophys. 2009;50:842–849. doi: 10.1016/j.rgg.2009.09.002. DOI

Yoshioka T, Nakashima D, Nakamura T, Shcheka S, Keppler H. Carbon solubility in silicate melts in equilibrium with a CO-CO2 gas phase and graphite. Geochim. Cosmochim. Acta. 2019;259:129–143. doi: 10.1016/j.gca.2019.06.007. DOI

Pechnikov VA, Kaminsky FV. Diamond potential of metamorphic rocks in the Kokchetav Massif, northern Kazakhstan. Eur. J. Mineral. 2008;20:395–413. doi: 10.1127/0935-1221/2008/0020-1813. DOI

Hwang S-L, et al. Nanometer-size P/K-rich silica glass (former melt) inclusions in microdiamond from the gneisses of Kokchetav and Erzgebirge massifs; diversified characteristics of the formation media of metamorphic microdiamond in UHP rocks due to host-rock buffering. Earth Planet. Sci. Lett. 2006;243:94–106. doi: 10.1016/j.epsl.2005.12.015. DOI

Dobrzhinetskaya LF, Green HW, Takahata N, Sano Y, Shirai K. Crustal signature of delta C-13 and nitrogen content in microdiamonds from Erzgebirge, Germany: Ion Microprobe Studies. J. Earth Sci.-China. 2010;21:623–634. doi: 10.1007/s12583-010-0129-6. DOI

Labrousse L, Duretz T, Gerya T. H2O-fluid-saturated melting of subducted continental crust facilitates exhumation of ultrahigh-pressure rocks in continental subduction zones. Earth Planet. Sci. Lett. 2015;428:151–161. doi: 10.1016/j.epsl.2015.06.016. DOI

Fedortchouk Y, Canil D, Semenets E. Mechanisms of diamond oxidation and their hearing on the fluid composition in kimberlite magmas. Am. Mineral. 2007;92:1200–1212. doi: 10.2138/am.2007.2416. DOI

Sunagawa, I. Crystals—Growth, Morphology and Perfection. (Cambridge University Press, 2005).

Palyanov YN, Sokol AG. The effect of composition of mantle fluids/melts on diamond formation processes. Lithos. 2009;112:690–700. doi: 10.1016/j.lithos.2009.03.018. DOI

Giardini AA, Tydings JE. Diamond synthesis: observations on the mechanism of formation. Am. Mineral. 1962;47:1393–1421.

Yamaoka S, Komatsu H, Kanda H, Setaka N. Growth of diamond with rhombic dodecahedral faces. J. Cryst. Growth. 1977;37:349–352. doi: 10.1016/0022-0248(77)90131-2. DOI

Palyanov YN, Khokhryakov AF, Borzdov YM, Kupriyanov IN. Diamond growth and morphology under the influence of impurity adsorption. Cryst. Growth Des. 2013;13:5411–5419. doi: 10.1021/cg4013476. DOI

Gurney JJ, Hildebrand PR, Carlson JA, Fedortchouk Y, Dyck DR. The morphological characteristics of diamonds from the Ekati property, Northwest Territories, Canada. Lithos. 2004;77:21–38. doi: 10.1016/j.lithos.2004.04.033. DOI

Harris JW, Hawthorne JB, Oosterveld MM. 4th International Kimberlite Conference 395–397. Geological Society of Australia; 1986.

Stachel T, Luth RW. Diamond formation—where, when and how? Lithos. 2015;220:200–220. doi: 10.1016/j.lithos.2015.01.028. DOI

Nečas D, Klapetek P. Gwyddion: an open-source software for SPM data analysis. Cent. Eur. J. Phys. 2012;10:181–188.

Wirth R. Focused ion beam (FIB); a novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy. Eur. J. Mineral. 2004;16:863–876. doi: 10.1127/0935-1221/2004/0016-0863. DOI

Wirth R, Gerdes A, Kemp AIS, Hanchar JM, Schersten A. Focused ion beam (FIB) combined with SEM and TEM; advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale. Chem. Geol. 2009;261:217–229. doi: 10.1016/j.chemgeo.2008.05.019. DOI

Nemchin AA, et al. A light carbon reservoir recorded in zircon-hosted diamond from the Jack Hills. Nature (London) 2008;454:92–95. doi: 10.1038/nature07102. PubMed DOI

Harte B, Fitzsimons ICW, Harris JW, Otter ML. Carbon isotope ratios and nitrogen abundances in relation to cathodoluminescence characteristics for some diamonds from the Kaapvaal Province, S. Africa. Mineral. Mag. 1999;63:829–856. doi: 10.1180/002646199548961. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...