Expression of cell markers and transcription factors in the avian retina compared with that in the marmoset retina
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
33834511
DOI
10.1002/cne.25154
Knihovny.cz E-zdroje
- Klíčová slova
- amacrine cells, cell type, fovea, ganglion cells, marmoset retina, retina, starburst amacrine cells, transcription factor,
- MeSH
- amakrinní buňky chemie metabolismus MeSH
- Callithrix MeSH
- Columbidae MeSH
- druhová specificita MeSH
- retina chemie cytologie metabolismus MeSH
- transkripční faktory analýza biosyntéza genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- transkripční faktory MeSH
In the vertebrate retina, amacrine and ganglion cells represent the most diverse cell classes. They can be classified into different cell types by several features, such as morphology, light responses, and gene expression profile. Although birds possess high visual acuity (similar to primates that we used here for comparison) and tetrachromatic color vision, data on the expression of transcription factors in retinal ganglion cells of birds are largely missing. In this study, we tested various transcription factors, known to label subpopulations of cells in mammalian retinae, in two avian species: the common buzzard (Buteo buteo), a raptor with exceptional acuity, and the domestic pigeon (Columba livia domestica), a good navigator and widely used model for visual cognition. Staining for the transcription factors Foxp2, Satb1 and Satb2 labeled most ganglion cells in the avian ganglion cell layer. CtBP2 was established as marker for displaced amacrine cells, which allowed us to reliably distinguish ganglion cells from displaced amacrine cells and assess their densities in buzzard and pigeon. When we additionally compared the temporal and central fovea of the buzzard with the fovea of primates, we found that the cellular organization in the pits was different in primates and raptors. In summary, we demonstrate that the expression of transcription factors is a defining feature of cell types not only in the retina of mammals but also in the retina of birds. The markers, which we have established, may provide useful tools for more detailed studies on the retinal circuitry of these highly visual animals.
Department of Zoology Charles University Prague Czech Republic
Research Center Neurosensory Science University of Oldenburg Oldenburg Germany
Zobrazit více v PubMed
Baden, T., Berens, P., Franke, K., Román Rosón, M., Bethge, M., & Euler, T. (2016). The functional diversity of retinal ganglion cells in the mouse. Nature, 529(7586), 345-350. https://doi.org/10.1038/nature16468
Bae, J. A., Mu, S., Kim, J. S., Turner, N. L., Tartavull, I., Kemnitz, N., Jordan, C. S., Norton, A. D., Silversmith, W. M., Prentki, R., Sorek, M., David, C., Jones, D. L., Bland, D., Sterling, A. L. R., Park, J., Briggman, K. L., Seung, H. S., & Eyewirers. (2018). Digital museum of retinal ganglion cells with dense anatomy and physiology. Cell, 173(5), 1293-1306.e19. https://doi.org/10.1016/j.cell.2018.04.040
Bassett, E. A., Korol, A., Deschamps, P. A., Buettner, R., Wallace, V. A., Williams, T., & West-Mays, J. A. (2012). Overlapping expression patterns and redundant roles for AP−2 transcription factors in the developing mammalian retina. Developmental Dynamics, 241(4), 814-829. https://doi.org/10.1002/dvdy.23762
Binggeli, R. L., & Paule, W. J. (1969). The pigeon retina: Quantitative aspects of the optic nerve and ganglion cell layer. The Journal of Comparative Neurology, 137(1), 1-18. https://doi.org/10.1002/cne.901370102
Bisgrove, D. A., & Godbout, R. (1999). Differential expression of AP−2α and AP-2β in the developing chick retina: Repression of R-FABP promoter activity by AP-2. Developmental Dynamics, 214(3), 195-206.
Bringmann, A. (2019). Structure and function of the bird fovea. Anatomia, Histologia, Embryologia, 48(3), 177-200. https://doi.org/10.1111/ahe.12432
Chan, T. L., Martin, P. R., Clunas, N., & Grünert, U. (2001). Bipolar cell diversity in the primate retina: Morphologic and immunocytochemical analysis of a new world monkey, the marmoset Callithrix jacchus. The Journal of Comparative Neurology, 437(2), 219-239. https://doi.org/10.1002/cne.1280
Chandra, A. J., Lee, S. C. S., & Grünert, U. (2019). Melanopsin and calbindin immunoreactivity in the inner retina of humans and marmosets. Visual Neuroscience, 36, E009. https://doi.org/10.1017/S0952523819000087
Chen, Y., & Naito, J. (1999). A quantitative analysis of cells in the ganglion cell layer of the chick retina. Brain, Behavior and Evolution, 53(2), 75-86. https://doi.org/10.1159/000006584
Coli, A., Stornelli, M. R., Barsotti, G., Lenzi, C., Bogi, F., Giannessi, E., Coli, A., Stornelli, M. R., Barsotti, G., Lenzi, C., Bogi, F., & Giannessi, E. (2018). Number and topographical distribution of retinal ganglion cells in diurnal and nocturnal raptors. International Journal of Morphology, 36(3), 955-961. https://doi.org/10.4067/S0717-95022018000300955
Dhande, O. S., Stafford, B. K., Franke, K., El-Danaf, R., Percival, K. A., Phan, A. H., Li, P., Hansen, B. J., Nguyen, P. L., Berens, P., Taylor, W. R., Callaway, E., Euler, T., & Huberman, A. D. (2019). Molecular fingerprinting of on-off direction-selective retinal ganglion cells across species and relevance to primate visual circuits. The Journal of Neuroscience, 39(1), 78-95. https://doi.org/10.1523/JNEUROSCI.1784-18.2018
Edqvist, P. H. D., Myers, S. M., & Hallböök, F. (2006). Early identification of retinal subtypes in the developing, pre-laminated chick retina using the transcription factors Prox1, Lim1, Ap2alpha, Pax6, Isl1, Isl2, Lim3 and Chx10. European Journal of Histochemistry: EJH, 50(2), 147-154.
Ehrlich, D. (1981). Regional specialization of the chick retina as revealed by the size and density of neurons in the ganglion cell layer. The Journal of Comparative Neurology, 195(4), 643-657. https://doi.org/10.1002/cne.901950408
Fischer, A. J., Foster, S., Scott, M. A., & Sherwood, P. (2008). The transient expression of LIM-domain transcription factors is coincident with the delayed maturation of photoreceptors in the chicken retina. The Journal of Comparative Neurology, 506(4), 584-603. https://doi.org/10.1002/cne.21578
Fischer, A. J., Scott, M. A., Zelinka, C., & Sherwood, P. (2010). A novel type of glial cell in the retina is stimulated by insulin-like growth factor 1 and may exacerbate damage to neurons and Müller glia. Glia, 58(6), 633-649. https://doi.org/10.1002/glia.20950
Fischer, A. J., Stanke, J. J., Aloisio, G., Hoy, H., & Stell, W. K. (2007). Heterogeneity of horizontal cells in the chicken retina. The Journal of Comparative Neurology, 500(6), 1154-1171. https://doi.org/10.1002/cne.21236
Fite, K. V., & Rosenfield-Wessels, S. (1975). A comparative study of deep avian foveas. Brain, Behavior and Evolution, 12(1-2), 97-115. https://doi.org/10.1159/000124142
Grünert, U., & Martin, P. R. (2020). Cell types and cell circuits in human and non-human primate retina. Progress in Retinal and Eye Research, 100844, 100844. https://doi.org/10.1016/j.preteyeres.2020.100844
Hayes, B. P. (1984). Cell populations of the ganglion cell layer: Displaced amacrine and matching amacrine cells in the pigeon retina. Experimental Brain Research, 56(3), 565-573. https://doi.org/10.1007/BF00237998
Helmstaedter, M., Briggman, K. L., Turaga, S. C., Jain, V., Seung, H. S., & Denk, W. (2013). Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature, 500(7461), 168-174. https://doi.org/10.1038/nature12346
Hendrickson, A. (1992). A morphological comparison of foveal development in man and monkey. Eye (London, England), 6(Pt 2), 136-144. https://doi.org/10.1038/eye.1992.29
Hodos, W., & Erichsen, J. T. (1990). Lower-field myopia in birds: An adaptation that keeps the ground in focus. Vision Research, 30(5), 653-657.
Hübler, D., Rankovic, M., Richter, K., Lazarevic, V., Altrock, W. D., Fischer, K.-D., Gundelfinger, E. D., & Fejtova, A. (2012). Differential spatial expression and subcellular localization of CtBP family members in rodent brain. PLoS One, 7(6), e39710. https://doi.org/10.1371/journal.pone.0039710
Inzunza, O., Bravo, H., Smith, R. L., & Angel, M. (1991). Topography and morphology of retinal ganglion cells in Falconiforms: A study on predatory and carrion-eating birds. The Anatomical Record, 229(2), 271-277. https://doi.org/10.1002/ar.1092290214
Jeon, C. J., Strettoi, E., & Masland, R. H. (1998). The major cell populations of the mouse retina. The Journal of Neuroscience, 18(21), 8936-8946.
Karten, J. H., Fite, K. V., & Brecha, N. (1977). Specific projection of displaced retinal ganglion cells upon the accessory optic system in the pigeon (Columbia livia). Proceedings of the National Academy of Sciences, 74(4), 1753-1756. https://doi.org/10.1073/pnas.74.4.1753
Krieger, B., Qiao, M., Rousso, D. L., Sanes, J. R., & Meister, M. (2017). Four alpha ganglion cell types in mouse retina: Function, structure, and molecular signatures. PLoS One, 12(7), e0180091. https://doi.org/10.1371/journal.pone.0180091
Larsson, M. (2011). Binocular vision and ipsilateral retinal projections in relation to eye and forelimb coordination. Brain, Behavior and Evolution, 77(4), 219-230. https://doi.org/10.1159/000329257
Martin, G. R. (2009). What is binocular vision for? A birds' eye view. Journal of Vision, 9(11), 14.1-14.19. https://doi.org/10.1167/9.11.14
Masland, R. H. (2012). The neuronal organization of the retina. Neuron, 76(2), 266-280. https://doi.org/10.1016/j.neuron.2012.10.002
Meyer, D. B. (1977). The avian eye and its adaptations. In F. Crescitelli, C. A. Dvorak, D. J. Eder, A. M. Granda, D. Hamasaki, K. Holmberg, A. Hughes, N. A. Locket, W. N. McFarland, D. B. Meyer, W. R. A. Muntz, F. W. Munz, E. C. Olson, R. W. Reyer, & F. Crescitelli (Eds.), The visual system in vertebrates (pp. 549-611). Springer. https://doi.org/10.1007/978-3-642-66468-7_10
Mietsch, M., Paqué, K., Drummer, C., Stahl-Hennig, C., & Roshani, B. (2020). The aging common marmoset's immune system: From junior to senior. American Journal of Primatology, 82(6), e23128. https://doi.org/10.1002/ajp.23128
Millar, T. J., Ishimoto, I., Chubb, I. W., Epstein, M. L., Johnson, C. D., & Morgan, I. G. (1987). Cholinergic amacrine cells of the chicken retina: A light and electron microscope immunocytochemical study. Neuroscience, 21(3), 725-743.
Mitkus, M., Olsson, P., Toomey, M. B., Corbo, J. C., & Kelber, A. (2017). Specialized photoreceptor composition in the raptor fovea. The Journal of Comparative Neurology, 525(9), 2152-2163. https://doi.org/10.1002/cne.24190
Moritoh, S., Komatsu, Y., Yamamori, T., & Koizumi, A. (2013). Diversity of retinal ganglion cells identified by transient GFP transfection in organotypic tissue culture of adult marmoset monkey retina. PLoS One, 8(1), e54667. https://doi.org/10.1371/journal.pone.0054667
Nasir-Ahmad, S., Lee, S. C. S., Martin, P. R., & Grünert, U. (2021). Identification of retinal ganglion cell types expressing the transcription factor Satb2 in three primate species. The Journal of Comparative Neurology. https://doi.org/10.1002/cne.25120
O'Brien, J. J., Chen, X., Macleish, P. R., O'Brien, J., & Massey, S. C. (2012). Photoreceptor coupling mediated by connexin36 in the primate retina. The Journal of Neuroscience, 32(13), 4675-4687. https://doi.org/10.1523/JNEUROSCI.4749-11.2012
Peichl, L., Ott, H., & Boycott, B. B. (1987). Alpha ganglion cells in mammalian retinae. Proceedings of the Royal Society of London. Series B, Biological Sciences, 231(1263), 169-197. https://doi.org/10.1098/rspb.1987.0040
Peng, Y.-R., Shekhar, K., Yan, W., Herrmann, D., Sappington, A., Bryman, G. S., van Zyl, T., Do, M. T. H., Regev, A., & Sanes, J. R. (2019). Molecular classification and comparative taxonomics of foveal and peripheral cells in primate retina. Cell, 176(5), 1222-1237.e22. https://doi.org/10.1016/j.cell.2019.01.004
Peng, Y.-R., Tran, N. M., Krishnaswamy, A., Kostadinov, D., Martersteck, E. M., & Sanes, J. R. (2017). Satb1 regulates contactin 5 to pattern dendrites of a mammalian retinal ganglion cell. Neuron, 95(4), 869-883.e6. https://doi.org/10.1016/j.neuron.2017.07.019
Potier, S., Mitkus, M., & Kelber, A. (2020). Visual adaptations of diurnal and nocturnal raptors. Seminars in Cell & Developmental Biology, 106, 116-126. https://doi.org/10.1016/j.semcdb.2020.05.004
Potier, S., Mitkus, M., Lisney, T. J., Isard, P.-F., Dulaurent, T., Mentek, M., Cornette, R., Schikorski, D., & Kelber, A. (2020). Inter-individual differences in foveal shape in a scavenging raptor, the black kite Milvus migrans. Scientific Reports, 10(1), 6133. https://doi.org/10.1038/s41598-020-63039-y
Puller, C., Haverkamp, S., & Grünert, U. (2007). OFF midget bipolar cells in the retina of the marmoset, Callithrix jacchus, express AMPA receptors. The Journal of Comparative Neurology, 502(3), 442-454. https://doi.org/10.1002/cne.21315
Qadri, M. A. J., & Cook, R. G. (2015). Experimental divergences in the visual cognition of birds and mammals. Comparative Cognition & Behavior Reviews, 10, 73-105. https://doi.org/10.3819/ccbr.2015.100004
Querubin, A., Lee, H. R., Provis, J. M., & O'Brien, K. M. B. (2009). Photoreceptor and ganglion cell topographies correlate with information convergence and high acuity regions in the adult pigeon (Columba livia) retina. The Journal of Comparative Neurology, 517(5), 711-722. https://doi.org/10.1002/cne.22178
Reiner, A., Brecha, N., & Karten, H. J. (1979). A specific projection of retinal displaced ganglion cells to the nucleus of the basal optic root in the chicken. Neuroscience, 4(11), 1679-1688.
Reymond, L. (1985). Spatial visual acuity of the eagle Aquila audax: A behavioural, optical and anatomical investigation. Vision Research, 25(10), 1477-1491.
Reymond, L. (1987). Spatial visual acuity of the falcon, Falco berigora: A behavioural, optical and anatomical investigation. Vision Research, 27(10), 1859-1874.
Rheaume, B. A., Jereen, A., Bolisetty, M., Sajid, M. S., Yang, Y., Renna, K., Sun, L., Robson, P., & Trakhtenberg, E. F. (2018). Single cell transcriptome profiling of retinal ganglion cells identifies cellular subtypes. Nature Communications, 9(1), 2759.
Rodieck, R. W., & Marshak, D. W. (1992). Spatial density and distribution of choline acetyltransferase immunoreactive cells in human, macaque, and baboon retinas. The Journal of Comparative Neurology, 321(1), 46-64.
Rodriguez, A. R., de Sevilla Müller, L. P., & Brecha, N. C. (2014). The RNA binding protein RBPMS is a selective marker of ganglion cells in the mammalian retina. The Journal of Comparative Neurology, 522(6), 1411-1443.
Röhrenbeck, J., Wässle, H., & Boycott, B. B. (1989). Horizontal cells in the monkey retina: Immunocytochemical staining with antibodies against calcium binding proteins. The European Journal of Neuroscience, 1(5), 407-420. https://doi.org/10.1111/j.1460-9568.1989.tb00349.x
Rousso, D. L., Qiao, M., Kagan, R. D., Yamagata, M., Palmiter, R. D., & Sanes, J. R. (2016). Two pairs of ON and OFF retinal ganglion cells are defined by intersectional patterns of transcription factor expression. Cell Reports, 15(9), 1930-1944. https://doi.org/10.1016/j.celrep.2016.04.069
Saleh, C. N., & Ehrlich, D. (1984). Composition of the supraoptic decussation of the chick (Gallus gallus). A possible factor limiting interhemispheric transfer of visual information. Cell and Tissue Research, 236(3), 601-609. https://doi.org/10.1007/BF00217229
Sanes, J. R., & Masland, R. H. (2015). The types of retinal ganglion cells: Current status and implications for neuronal classification. Annual Review of Neuroscience, 38, 221-246. https://doi.org/10.1146/annurev-neuro-071714-034120
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., & Cardona, A. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods, 9(7), 676-682. https://doi.org/10.1038/nmeth.2019
Sinha, R., Hoon, M., Baudin, J., Okawa, H., Wong, R. O. L., & Rieke, F. (2017). Cellular and circuit mechanisms shaping the perceptual properties of the primate fovea. Cell, 168(3), 413-426.e12. https://doi.org/10.1016/j.cell.2017.01.005
Sugiyama, T., Yamamoto, H., Kon, T., Chaya, T., Omori, Y., Suzuki, Y., Abe, K., Watanabe, D., & Furukawa, T. (2020). The potential role of Arhgef33 RhoGEF in foveal development in the zebra finch retina. Scientific Reports, 10, 21450. https://doi.org/10.1038/s41598-020-78452-6
Sweeney, N. T., James, K. N., Nistorica, A., Lorig-Roach, R. M., & Feldheim, D. A. (2019). Expression of transcription factors divides retinal ganglion cells into distinct classes. Journal of Comparative Neurology, 527(1), 225-235. https://doi.org/10.1002/cne.24172
ten Tusscher, M. P. M. (2014). Does dominance of crossing retinal ganglion cells make the eyes cross? The temporal retina in the origin of infantile esotropia - A neuroanatomical and evolutionary analysis. Acta Ophthalmologica, 92(6), e419-e423. https://doi.org/10.1111/aos.12289
Tom Dieck, S., Altrock, W. D., Kessels, M. M., Qualmann, B., Regus, H., Brauner, D., Fejtová, A., Bracko, O., Gundelfinger, E. D., & Brandstätter, J. H. (2005). Molecular dissection of the photoreceptor ribbon synapse: Physical interaction of bassoon and RIBEYE is essential for the assembly of the ribbon complex. The Journal of Cell Biology, 168(5), 825-836. https://doi.org/10.1083/jcb.200408157
Tran, N. M., Shekhar, K., Whitney, I. E., Jacobi, A., Benhar, I., Hong, G., Yan, W., Adiconis, X., Arnold, M. E., Lee, J. M., Levin, J. Z., Lin, D., Wang, C., Lieber, C. M., Regev, A., He, Z., & Sanes, J. R. (2019). Single-cell profiles of retinal ganglion cells differing in resilience to injury reveal Neuroprotective genes. Neuron, 104(6), 1039-1055.e12. https://doi.org/10.1016/j.neuron.2019.11.006
Wasserman, E. A., & Young, M. E. (2010). Same-different discrimination: The keel and backbone of thought and reasoning. Journal of Experimental Psychology. Animal Behavior Processes, 36(1), 3-22. https://doi.org/10.1037/a0016327
Weltzien, F., Percival, K. A., Martin, P. R., & Grünert, U. (2015). Analysis of bipolar and amacrine populations in marmoset retina. The Journal of Comparative Neurology, 523(2), 313-334. https://doi.org/10.1002/cne.23683
Whitney, I. E., Keeley, P. W., John, A. J. S., Kautzman, A. G., Kay, J. N., & Reese, B. E. (2014). Sox2 regulates cholinergic Amacrine cell positioning and dendritic stratification in the retina. Journal of Neuroscience, 34(30), 10109-10121.
Wilder, H. D., Grünert, U., Lee, B. B., & Martin, P. R. (1996). Topography of ganglion cells and photoreceptors in the retina of a New World monkey: The marmoset Callithrix jacchus. Visual Neuroscience, 13(2), 335-352.
Wong, R. C. S., Cloherty, S. L., Ibbotson, M. R., & O'Brien, B. J. (2012). Intrinsic physiological properties of rat retinal ganglion cells with a comparative analysis. Journal of Neurophysiology, 108(7), 2008-2023.
Yamagata, M., Yan, W., & Sanes, J. R. (2021). A cell atlas of the chick retina based on single cell transcriptomics. eLife, 10, e63907. https://doi.org/10.7554/eLife.63907
Yan, W., Laboulaye, M. A., Tran, N. M., Whitney, I. E., Benhar, I., & Sanes, J. R. (2020). Mouse retinal cell atlas: Molecular identification of over sixty amacrine cell types. The Journal of Neuroscience, 40(27), 5177-5195. https://doi.org/10.1523/JNEUROSCI.0471-20.2020
Zhang, C., Yu, W.-Q., Hoshino, A., Huang, J., Rieke, F., Reh, T. A., & Wong, R. O. L. (2019). Development of ON and OFF cholinergic amacrine cells in the human fetal retina. Journal of Comparative Neurology, 527(1), 174-186. https://doi.org/10.1002/cne.24405