Impact of temperature on obstructive sleep apnoea in three different climate zones of Europe: Data from the European Sleep Apnoea Database (ESADA)

. 2021 Oct ; 30 (5) : e13315. [epub] 20210411

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33840143

Recent studies indicate that ambient temperature may modulate obstructive sleep apnoea (OSA) severity. However, study results are contradictory warranting more investigation in this field. We analysed 19,293 patients of the European Sleep Apnoea Database (ESADA) cohort with restriction to the three predominant climate zones according to the Köppen-Geiger climate classification: Cfb (warm temperature, fully humid, warm summer), Csa (warm temperature, summer dry, hot summer), and Dfb (snow, fully humid, warm summer). Average outside temperature values were obtained and several hierarchical regression analyses were performed to investigate the impact of temperature on the apnea-hypopnea index (AHI), oxygen desaturation index (ODI), time of oxygen saturation <90% (T90) and minimum oxygen saturation (MinSpO2 ) after controlling for confounders including age, body mass index, gender, and air conditioning (A/C) use. AHI and ODI increased with higher temperatures with a standardised coefficient beta (β) of 0.28 for AHI and 0.25 for ODI, while MinSpO2 decreased with a β of -0.13 (all results p < .001). When adjusting for climate zones, the temperature effect was only significant in Cfb (AHI: β = 0.11) and Dfb (AHI: β = 0.08) (Model 1: p < .001). The presence of A/C (3.9% and 69.3% in Cfab and Csa, respectively) demonstrated only a minor increase in the prediction of the variation (Cfb: AHI, R2 +0.003; and Csa: AHI, R2 +0.007; both p < .001). Our present study indicates a limited but consistent influence of environmental temperature on OSA severity and this effect is modulated by climate zones.

Center of Sleep and Wake Disorders Sahlgrenska Academy Gothenburg University Göteborg Sweden

Department of Cardiology University Hospital Brno Brno Czech Republic

Department of Cardiovascular Neural Metabolic Sciences Istituto Auxologico Italiano IRCCS St Luke Hospital Milan Italy

Department of Chest Diseases Ege University Izmir Turkey

Department of Medicine and Surgery University of Milano Bicocca Milan Italy

Department of Pneumology University Hospital de Santa Maria CHULN Lisbon Portugal

Department of Pulmonary Diseases and Clinical Allergology Sleep Research Centre University of Turku Turku Finland

Department of Sleep Medicine Royal Infirmary Edinburgh Edinburgh UK

Division of Medicine Department of Pulmonary Diseases Turku University Hospital Turku Finland

Faculdade de Medicina Instituto de Saúde Ambiental Universidade de Lisboa Lisbon Portugal

International Clinical Research Center St Ann's University Hospital Brno Czech Republic

IRIB CNR Palermo Italy

Multidisciplinary Sleep Disorders Centre Antwerp University Hospital Antwerp Belgium

PROMISE Dept University of Palermo Palermo Italy

Pulmonary and Sleep Disorders Unit School of Medicine St Vincent's University Hospital University College Dublin Dublin Ireland

Pulmonary Department Sleep Disorders Center Sahlgrenska University Hospital Gothenbrug Sweden

Respiratory Failure Unit G Papanikolaou Hospital Aristotle University of Thessaloniki Thessaloniki Greece

Sleep Disorders Unit Department of Respiratory Medicine Medical School University of Crete Heraklion Greece

Université Grenoble Alpes INSERM HP2 and Grenoble University Hospital Grenoble France

University of Antwerp Antwerp Belgium

Zobrazit více v PubMed

Anderson, G. B., Dominici, F., Wang, Y., McCormack, M. C., Bell, M. L., & Peng, R. D. (2013). Heat-related emergency hospitalizations for respiratory diseases in the Medicare population. American Journal of Respiratory and Critical Care Medicine, 187(10), 1098-1103. https://doi.org/10.1164/rccm.201211-1969OC

Campbell, S. S., & Broughton, R. J. (1994). Rapid decline in body temperature before sleep: Fluffing the physiological pillow? Chronobiology International, 11(2), 126-131. https://doi.org/10.3109/07420529409055899

Cassol, C. M., Martinez, D., da Silva, F., Fischer, M. K., Lenz, M., & Bos, A. J. G. (2012). Is sleep apnea a winter disease?: Meteorologic and sleep laboratory evidence collected over 1 decade. Chest, 142(6), 1499-1507. https://doi.org/10.1378/chest.11-0493

Cheng, W. J., Liang, S. J., Huang, C. S., Lin, C. L., Pien, L. C., & Hang, L. W. (2019). Air pollutants are associated with obstructive sleep apnea severity in non-rapid eye movement sleep. Journal of Clinical Sleep Medicine, 15(6), 831-837. https://doi.org/10.5664/jcsm.7830

DeMeo, D. L., Zanobetti, A., Litonjua, A. A., Coull, B. A., Schwartz, J., & Gold, D. R. (2004). Ambient air pollution and oxygen saturation. American Journal of Respiratory and Critical Care Medicine, 170(4), 383-387. https://doi.org/10.1164/rccm.200402-244OC

Guo, Y., Gasparrini, A., Armstrong, B., Li, S., Tawatsupa, B., Tobias, A., Lavigne, E., de Sousa Zanotti Stagliorio Coelho, M., Leone, M., Pan, X., Tong, S., Tian, L., Kim, H. O., Hashizume, M., Honda, Y., Guo, Y.-L., Wu, C.-F., Punnasiri, K., Yi, S.-M., … Williams, G. (2014). Global variation in the effects of ambient temperature on mortality: A systematic evaluation. Epidemiology, 25(6), 781-789. https://doi.org/10.1097/EDE.0000000000000165

Hedner, J., Grote, L., Bonsignore, M., McNicholas, W., Lavie, P., Parati, G., Sliwinski, P., Barbe, F., De Backer, W., Escourrou, P., Fietze, I., Kvamme, J. A., Lombardi, C., Marrone, O., Masa, J. F., Montserrat, J. M., Penzel, T., Pretl, M., Riha, R., … Zielinski, J. (2011). The European Sleep Apnoea Database (ESADA): Report from 22 European sleep laboratories. European Respiratory Journal, 38(3), 635-642. https://doi.org/10.1183/09031936.00046710

Ingram, D. G., Matthews, C. K., & Plante, D. T. (2015). Seasonal trends in sleep-disordered breathing: Evidence from Internet search engine query data. Sleep Breath, 19(1), 79-84. https://doi.org/10.1007/s11325-014-0965-1

Joe, L., Hoshiko, S., Dobraca, D., Jackson, R., Smorodinsky, S., Smith, D., & Harnly, M. (2016). Mortality during a Large-Scale Heat Wave by Place, Demographic Group, Internal and External Causes of Death, and Building Climate Zone. International Journal of Environmental Research and Public Health, 13(3), 299. https://doi.org/10.3390/ijerph13030299

Karacan, I., Thornby, J. I., Anch, A. M., Williams, R. L., & Perkins, H. M. (1978). Effects of high ambient temperature on sleep in young men. Aviation, Space and Environmental Medicine, 49(7), 855-860.

Köppen, W. (1884). Die Wärmezonen der Erde, nach der Dauer der heissen, gemässigten und kalten Zeit und nach der Wirkung der Wärme auf die organische Welt betrachtet (The thermal zones of the Earth according to the duration of hot, moderate and cold periods and of the impact of heat on the organic world). Meteorologische Zeitschrift, 1, 215-226.

Marshall, N. S., & Cowie, C. T. (2015). Completely scoobied: The confusing world of temperature and pollution effects on sleep apnoea. European Respiratory Journal, 46(5), 1251-1254. https://doi.org/10.1183/13993003.01155-2015

McCormack, M. C., Belli, A. J., Waugh, D., Matsui, E. C., Peng, R. D., Williams, D'. A. L., Paulin, L., Saha, A., Aloe, C. M., Diette, G. B., Breysse, P. N., & Hansel, N. N. (2016). Respiratory effects of indoor heat and the interaction with air pollution in chronic obstructive pulmonary disease. Annals of the American Thoracic Society, 13(12), 2125-2131. https://doi.org/10.1513/AnnalsATS.201605-329OC

Obradovich, N., Migliorini, R., Mednick, S. C., & Fowler, J. H. (2017). Nighttime temperature and human sleep loss in a changing climate. Science Advances, 3(5), e1601555. https://doi.org/10.1126/sciadv.1601555

Rifkin, D. I., Long, M. W., & Perry, M. J. (2018). Climate change and sleep: A systematic review of the literature and conceptual framework. Sleep Medicine Reviews, 42, 3-9. https://doi.org/10.1016/j.smrv.2018.07.007

Taylor, N. A. (2014). Human heat adaptation. Comprehensive Physiology, 4(1), 325-365. https://doi.org/10.1002/cphy.c130022

Valham, F., Sahlin, C., Stenlund, H., & Franklin, K. A. (2012). Ambient temperature and obstructive sleep apnea: Effects on sleep, sleep apnea, and morning alertness. Sleep, 35(4), 513-517. https://doi.org/10.5665/sleep.1736

Walter, L. M., Nisbet, L. C., Nixon, G. M., Davey, M. J., Anderson, V., Trinder, J., Walker, A. M., & Horne, R. S. C. (2013). Seasonal variability in paediatric obstructive sleep apnoea. Archives of Disease in Childhood, 98(3), 208-210. https://doi.org/10.1136/archdischild-2012-302599

Weinreich, G., Wessendorf, T. E., Pundt, N., Weinmayr, G., Hennig, F., Moebus, S., Möhlenkamp, S., Erbel, R., Jöckel, K.-H., Teschler, H., & Hoffmann, B. (2015). Association of short-term ozone and temperature with sleep disordered breathing. European Respiratory Journal, 46(5), 1361-1369. https://doi.org/10.1183/13993003.02255-2014

Zanobetti, A., Redline, S., Schwartz, J., Rosen, D., Patel, S., O'Connor, G. T., & Gold, D. R. (2010). Associations of PM10 with sleep and sleep-disordered breathing in adults from seven U.S. urban areas. American Journal of Respiratory and Critical Care Medicine, 182(6), 819-825. https://doi.org/10.1164/rccm.200912-1797OC

Zhao, Y., Huang, Z., Wang, S., Hu, J., Xiao, J., Li, X., Liu, T., Zeng, W., Guo, L., Du, Q., & Ma, W. (2019). Morbidity burden of respiratory diseases attributable to ambient temperature: A case study in a subtropical city in China. Environ Health, 18(1), 89. https://doi.org/10.1186/s12940-019-0529-8

Zheng, G., Li, K., & Wang, Y. (2019). The effects of high-temperature weather on human sleep quality and appetite. International Journal of Environmental Research and Public Health, 16(2), 270. https://doi.org/10.3390/ijerph16020270

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...