Impact of temperature on obstructive sleep apnoea in three different climate zones of Europe: Data from the European Sleep Apnoea Database (ESADA)
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33840143
DOI
10.1111/jsr.13315
Knihovny.cz E-zdroje
- Klíčová slova
- climate zone, environment, sleep-related breathing disorders,
- MeSH
- index tělesné hmotnosti MeSH
- kohortové studie MeSH
- lidé MeSH
- obstrukční spánková apnoe * diagnóza epidemiologie MeSH
- syndromy spánkové apnoe * MeSH
- teplota MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Recent studies indicate that ambient temperature may modulate obstructive sleep apnoea (OSA) severity. However, study results are contradictory warranting more investigation in this field. We analysed 19,293 patients of the European Sleep Apnoea Database (ESADA) cohort with restriction to the three predominant climate zones according to the Köppen-Geiger climate classification: Cfb (warm temperature, fully humid, warm summer), Csa (warm temperature, summer dry, hot summer), and Dfb (snow, fully humid, warm summer). Average outside temperature values were obtained and several hierarchical regression analyses were performed to investigate the impact of temperature on the apnea-hypopnea index (AHI), oxygen desaturation index (ODI), time of oxygen saturation <90% (T90) and minimum oxygen saturation (MinSpO2 ) after controlling for confounders including age, body mass index, gender, and air conditioning (A/C) use. AHI and ODI increased with higher temperatures with a standardised coefficient beta (β) of 0.28 for AHI and 0.25 for ODI, while MinSpO2 decreased with a β of -0.13 (all results p < .001). When adjusting for climate zones, the temperature effect was only significant in Cfb (AHI: β = 0.11) and Dfb (AHI: β = 0.08) (Model 1: p < .001). The presence of A/C (3.9% and 69.3% in Cfab and Csa, respectively) demonstrated only a minor increase in the prediction of the variation (Cfb: AHI, R2 +0.003; and Csa: AHI, R2 +0.007; both p < .001). Our present study indicates a limited but consistent influence of environmental temperature on OSA severity and this effect is modulated by climate zones.
Center of Sleep and Wake Disorders Sahlgrenska Academy Gothenburg University Göteborg Sweden
Department of Cardiology University Hospital Brno Brno Czech Republic
Department of Chest Diseases Ege University Izmir Turkey
Department of Medicine and Surgery University of Milano Bicocca Milan Italy
Department of Pneumology University Hospital de Santa Maria CHULN Lisbon Portugal
Department of Sleep Medicine Royal Infirmary Edinburgh Edinburgh UK
Division of Medicine Department of Pulmonary Diseases Turku University Hospital Turku Finland
Faculdade de Medicina Instituto de Saúde Ambiental Universidade de Lisboa Lisbon Portugal
International Clinical Research Center St Ann's University Hospital Brno Czech Republic
Multidisciplinary Sleep Disorders Centre Antwerp University Hospital Antwerp Belgium
PROMISE Dept University of Palermo Palermo Italy
Pulmonary Department Sleep Disorders Center Sahlgrenska University Hospital Gothenbrug Sweden
Université Grenoble Alpes INSERM HP2 and Grenoble University Hospital Grenoble France
Zobrazit více v PubMed
Anderson, G. B., Dominici, F., Wang, Y., McCormack, M. C., Bell, M. L., & Peng, R. D. (2013). Heat-related emergency hospitalizations for respiratory diseases in the Medicare population. American Journal of Respiratory and Critical Care Medicine, 187(10), 1098-1103. https://doi.org/10.1164/rccm.201211-1969OC
Campbell, S. S., & Broughton, R. J. (1994). Rapid decline in body temperature before sleep: Fluffing the physiological pillow? Chronobiology International, 11(2), 126-131. https://doi.org/10.3109/07420529409055899
Cassol, C. M., Martinez, D., da Silva, F., Fischer, M. K., Lenz, M., & Bos, A. J. G. (2012). Is sleep apnea a winter disease?: Meteorologic and sleep laboratory evidence collected over 1 decade. Chest, 142(6), 1499-1507. https://doi.org/10.1378/chest.11-0493
Cheng, W. J., Liang, S. J., Huang, C. S., Lin, C. L., Pien, L. C., & Hang, L. W. (2019). Air pollutants are associated with obstructive sleep apnea severity in non-rapid eye movement sleep. Journal of Clinical Sleep Medicine, 15(6), 831-837. https://doi.org/10.5664/jcsm.7830
DeMeo, D. L., Zanobetti, A., Litonjua, A. A., Coull, B. A., Schwartz, J., & Gold, D. R. (2004). Ambient air pollution and oxygen saturation. American Journal of Respiratory and Critical Care Medicine, 170(4), 383-387. https://doi.org/10.1164/rccm.200402-244OC
Guo, Y., Gasparrini, A., Armstrong, B., Li, S., Tawatsupa, B., Tobias, A., Lavigne, E., de Sousa Zanotti Stagliorio Coelho, M., Leone, M., Pan, X., Tong, S., Tian, L., Kim, H. O., Hashizume, M., Honda, Y., Guo, Y.-L., Wu, C.-F., Punnasiri, K., Yi, S.-M., … Williams, G. (2014). Global variation in the effects of ambient temperature on mortality: A systematic evaluation. Epidemiology, 25(6), 781-789. https://doi.org/10.1097/EDE.0000000000000165
Hedner, J., Grote, L., Bonsignore, M., McNicholas, W., Lavie, P., Parati, G., Sliwinski, P., Barbe, F., De Backer, W., Escourrou, P., Fietze, I., Kvamme, J. A., Lombardi, C., Marrone, O., Masa, J. F., Montserrat, J. M., Penzel, T., Pretl, M., Riha, R., … Zielinski, J. (2011). The European Sleep Apnoea Database (ESADA): Report from 22 European sleep laboratories. European Respiratory Journal, 38(3), 635-642. https://doi.org/10.1183/09031936.00046710
Ingram, D. G., Matthews, C. K., & Plante, D. T. (2015). Seasonal trends in sleep-disordered breathing: Evidence from Internet search engine query data. Sleep Breath, 19(1), 79-84. https://doi.org/10.1007/s11325-014-0965-1
Joe, L., Hoshiko, S., Dobraca, D., Jackson, R., Smorodinsky, S., Smith, D., & Harnly, M. (2016). Mortality during a Large-Scale Heat Wave by Place, Demographic Group, Internal and External Causes of Death, and Building Climate Zone. International Journal of Environmental Research and Public Health, 13(3), 299. https://doi.org/10.3390/ijerph13030299
Karacan, I., Thornby, J. I., Anch, A. M., Williams, R. L., & Perkins, H. M. (1978). Effects of high ambient temperature on sleep in young men. Aviation, Space and Environmental Medicine, 49(7), 855-860.
Köppen, W. (1884). Die Wärmezonen der Erde, nach der Dauer der heissen, gemässigten und kalten Zeit und nach der Wirkung der Wärme auf die organische Welt betrachtet (The thermal zones of the Earth according to the duration of hot, moderate and cold periods and of the impact of heat on the organic world). Meteorologische Zeitschrift, 1, 215-226.
Marshall, N. S., & Cowie, C. T. (2015). Completely scoobied: The confusing world of temperature and pollution effects on sleep apnoea. European Respiratory Journal, 46(5), 1251-1254. https://doi.org/10.1183/13993003.01155-2015
McCormack, M. C., Belli, A. J., Waugh, D., Matsui, E. C., Peng, R. D., Williams, D'. A. L., Paulin, L., Saha, A., Aloe, C. M., Diette, G. B., Breysse, P. N., & Hansel, N. N. (2016). Respiratory effects of indoor heat and the interaction with air pollution in chronic obstructive pulmonary disease. Annals of the American Thoracic Society, 13(12), 2125-2131. https://doi.org/10.1513/AnnalsATS.201605-329OC
Obradovich, N., Migliorini, R., Mednick, S. C., & Fowler, J. H. (2017). Nighttime temperature and human sleep loss in a changing climate. Science Advances, 3(5), e1601555. https://doi.org/10.1126/sciadv.1601555
Rifkin, D. I., Long, M. W., & Perry, M. J. (2018). Climate change and sleep: A systematic review of the literature and conceptual framework. Sleep Medicine Reviews, 42, 3-9. https://doi.org/10.1016/j.smrv.2018.07.007
Taylor, N. A. (2014). Human heat adaptation. Comprehensive Physiology, 4(1), 325-365. https://doi.org/10.1002/cphy.c130022
Valham, F., Sahlin, C., Stenlund, H., & Franklin, K. A. (2012). Ambient temperature and obstructive sleep apnea: Effects on sleep, sleep apnea, and morning alertness. Sleep, 35(4), 513-517. https://doi.org/10.5665/sleep.1736
Walter, L. M., Nisbet, L. C., Nixon, G. M., Davey, M. J., Anderson, V., Trinder, J., Walker, A. M., & Horne, R. S. C. (2013). Seasonal variability in paediatric obstructive sleep apnoea. Archives of Disease in Childhood, 98(3), 208-210. https://doi.org/10.1136/archdischild-2012-302599
Weinreich, G., Wessendorf, T. E., Pundt, N., Weinmayr, G., Hennig, F., Moebus, S., Möhlenkamp, S., Erbel, R., Jöckel, K.-H., Teschler, H., & Hoffmann, B. (2015). Association of short-term ozone and temperature with sleep disordered breathing. European Respiratory Journal, 46(5), 1361-1369. https://doi.org/10.1183/13993003.02255-2014
Zanobetti, A., Redline, S., Schwartz, J., Rosen, D., Patel, S., O'Connor, G. T., & Gold, D. R. (2010). Associations of PM10 with sleep and sleep-disordered breathing in adults from seven U.S. urban areas. American Journal of Respiratory and Critical Care Medicine, 182(6), 819-825. https://doi.org/10.1164/rccm.200912-1797OC
Zhao, Y., Huang, Z., Wang, S., Hu, J., Xiao, J., Li, X., Liu, T., Zeng, W., Guo, L., Du, Q., & Ma, W. (2019). Morbidity burden of respiratory diseases attributable to ambient temperature: A case study in a subtropical city in China. Environ Health, 18(1), 89. https://doi.org/10.1186/s12940-019-0529-8
Zheng, G., Li, K., & Wang, Y. (2019). The effects of high-temperature weather on human sleep quality and appetite. International Journal of Environmental Research and Public Health, 16(2), 270. https://doi.org/10.3390/ijerph16020270