Synthesis, Inhibitory Activity, and In Silico Modeling of Selective COX-1 Inhibitors with a Quinazoline Core

. 2021 Apr 08 ; 12 (4) : 610-616. [epub] 20210312

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33854702

Grantová podpora
T 942 Austrian Science Fund FWF - Austria

Selective cyclooxygenase-1 (COX-1) inhibition has got into the spotlight with the discovery of COX-1 upregulation in various cancers and the cardioprotective role of COX-1 in control of thrombocyte aggregation. Yet, COX-1-selective inhibitors are poorly explored. Thus, three series of quinazoline derivatives were prepared and tested for their potential inhibitory activity toward COX-1 and COX-2. Of the prepared compounds, 11 exhibited interesting COX-1 selectivity, with 8 compounds being totally COX-1-selective. The IC50 value of the best quinazoline inhibitor was 64 nM. The structural features ensuring COX-1 selectivity were elucidated using in silico modeling.

Zobrazit více v PubMed

Lu G.; Tsai A. L.; Van Wart H. E.; Kulmacz R. J. Comparison of the Peroxidase Reaction Kinetics of Prostaglandin H Synthase-1 and −2. J. Biol. Chem. 1999, 274, 16162–16167. 10.1074/jbc.274.23.16162. PubMed DOI

Cingolani G.; Panella A.; Perrone M. G.; Vitale P.; Di Mauro G.; Fortuna C. G.; Armen R. S.; Ferorelli S.; Smith W. L.; Scilimati A. Structural Basis for Selective Inhibition of Cyclooxygenase-1 (COX-1) by Diarylisoxazoles Mofezolac and 3-(5-Chlorofuran-2-yl)-5-methyl-4-phenylisoxazole (P6). Eur. J. Med. Chem. 2017, 138, 661–668. 10.1016/j.ejmech.2017.06.045. PubMed DOI PMC

Desai S. J.; Prickril B.; Rasooly A. Mechanisms of Phytonutrient Modulation of Cyclooxygenase-2 (COX-2) and Inflammation Related to Cancer. Nutr. Cancer 2018, 70 (3), 350–375. 10.1080/01635581.2018.1446091. PubMed DOI PMC

Perrone M. G.; Scilimati A.; Simone L.; Vitale P. Selective COX-1 inhibition: A Therapeutic Target to Be Reconsidered. Curr. Med. Chem. 2010, 17, 3769–3805. 10.2174/092986710793205408. PubMed DOI

Perrone M. G.; Lofrumento D. D.; Vitale P.; De Nuccio F.; La Pesa V.; Panella A.; Calvello R.; Cianciulli A.; Panaro M. A.; Scilimati A. Selective Cyclooxygenase-1 Inhibition by P6 and Gastrotoxicity: Preliminary Investigation. Pharmacology 2015, 95, 22–28. 10.1159/000369826. PubMed DOI

Ornelas A.; Zacharias-Millward N.; Menter D. G.; Davis J. S.; Lichtenberger L.; Hawke D.; Hawk E.; Vilar E.; Bhattacharya P.; Millward S. Beyond COX-1: The Effects of Aspirin on Platelet Biology and Potential Mechanisms of Chemoprevention. Cancer Metastasis Rev. 2017, 36, 289–303. 10.1007/s10555-017-9675-z. PubMed DOI PMC

Choi S. H.; Aid S.; Choi U.; Bosetti F. Cyclooxygenases-1 and −2 Differentially Modulate Leukocyte Recruitment into the Inflamed Brain. Pharmacogenomics J. 2010, 10, 448–457. 10.1038/tpj.2009.68. PubMed DOI PMC

Khan A. A.; Iadarola M.; Yang H. Y.; Dionne R. A. Expression of COX-1 and COX-2 in a Clinical Model of Acute Inflammation. J. Pain 2007, 8, 349–354. 10.1016/j.jpain.2006.10.004. PubMed DOI PMC

Li X.; Mazaleuskaya L. L.; Ballantyne L. L.; Meng H.; FitzGerald G. A.; Funk C. D. Genomic and Lipidomic Analyses Differentiate the Compensatory Roles of Two COX Isoforms During Systemic Inflammation in Mice. J. Lipid Res. 2018, 59, 102–112. 10.1194/jlr.M080028. PubMed DOI PMC

Pannunzio A.; Coluccia M. Cyclooxygenase-1 (COX-1) and COX-1 Inhibitors in Cancer: A Review of Oncology and Medicinal Chemistry Literature. Pharmaceuticals 2018, 11, 101.10.3390/ph11040101. PubMed DOI PMC

Perrone M. G.; Luisi O.; De Grassi A.; Ferorelli S.; Cormio G.; Scilimati A. Translational Theragnosis of Ovarian Cancer: Where Do We Stand?. Curr. Med. Chem. 2020, 27, 5675–5715. 10.2174/0929867326666190816232330. PubMed DOI

Vitale P.; Panella A.; Scilimati A.; Perrone M. G. COX-1 Inhibitors: Beyond Structure Toward Therapy. Med. Res. Rev. 2016, 36, 641–671. 10.1002/med.21389. PubMed DOI

Belton O.; Fitzgerald D. J. Cyclooxygenase Isoforms and Atherosclerosis. Expert. Rev. Mol. Med. 2003, 5, 1–18. PubMed

Loftin C. D.; Trivedi D. B.; Langenbach R. Cyclooxygenase-1-selective Inhibition Prolongs Gestation in Mice without Adverse Effects on the Ductus Arteriosus. J. Clin. Invest. 2002, 110, 549–557. 10.1172/JCI0214924. PubMed DOI PMC

Calvello R.; Lofrumento D. D.; Perrone M. G.; Cianciulli A.; Salvatore R.; Vitale P.; De Nuccio F.; Giannotti L.; Nicolardi G.; Panaro M. A.; Scilimati A. Highly Selective Cyclooxygenase-1 Inhibitors P6 and Mofezolac Counteract Inflammatory State both in vitro and in vivo Models of Neuroinflammation. Front. Neurol. 2017, 8, 00251.10.3389/fneur.2017.00251. PubMed DOI PMC

Calvello R.; Panaro M. A.; Carbone M. L.; Cianciulli A.; Perrone M. G.; Vitale P.; Malerba P.; Scilimati A. Novel Selective COX-1 Inhibitors Suppress Neuroinflammatory Mediators in LPS-stimulated N13 Microglial Cells. Pharmacol. Res. 2012, 65, 137–148. 10.1016/j.phrs.2011.09.009. PubMed DOI

Meek I. L.; Vonkeman H. E.; Kasemier J.; Movig K. L.; van de Laar M. A. Interference of NSAIDs with the Thrombocyte Inhibitory Effect of Aspirin: A Placebo-Controlled, ex vivo, Serial Placebo-Controlled Serial Crossover Study. Eur. J. Clin. Pharmacol. 2013, 69, 365–371. 10.1007/s00228-012-1370-y. PubMed DOI

Mitchell J. A.; Shala F.; Elghazouli Y.; Warner T. D.; Gaston-Massuet C.; Crescente M.; Armstrong P. C.; Herschman H. R.; Kirkby N. S. Cell-Specific Gene Deletion Reveals the Antithrombotic Function of COX1 and Explains the Vascular COX1/Prostacyclin Paradox. Circ. Res. 2019, 125, 847–854. 10.1161/CIRCRESAHA.119.314927. PubMed DOI PMC

Roodhart J. M.; Daenen L. G.; Stigter E. C.; Prins H. J.; Gerrits J.; Houthuijzen J. M.; Gerritsen M. G.; Schipper H. S.; Backer M. J.; van Amersfoeort M.; Vermaat J. S. P.; Moerer P.; Ishihara K.; Kalkhoven E.; Beijnen J. H.; Derksen P. W. B.; Medema R. H.; Martens A. C.; Brenkman A. B.; Voest E. E. Mesenchymal Stem Cells Induce Resistance to Chemotherapy through the Release of Platinum-Induced Fatty Acids. Cancer Cell 2011, 20, 370–383. 10.1016/j.ccr.2011.08.010. PubMed DOI

Chandrika P. M.; Yakaiah T.; Rao A. R.; Narsaiah B.; Reddy N. C.; Sridhar V.; Rao J. V. Synthesis of Novel 4,6-Disubstituted Quinazoline Derivatives, Their Anti-Inflammatory and Anti-Cancer Activity (Cytotoxic) Against U937 Leukemia Cell Lines. Eur. J. Med. Chem. 2008, 43, 846–852. 10.1016/j.ejmech.2007.06.010. PubMed DOI

Abdel-Aziz A. A.; Abou-Zeid L. A.; ElTahir K. E. H.; Ayyad R. R.; El-Sayed M. A.; El-Azab A. S. Synthesis, Anti-Inflammatory, Analgesic, COX-1/2 Inhibitory Activities and Molecular Docking Studies of Substituted 2-Mercapto-4(3H)-Quinazolinones. Eur. J. Med. Chem. 2016, 121, 410–421. 10.1016/j.ejmech.2016.05.066. PubMed DOI

El-Feky S. A.; Imran M.; Nayeem N. Design, Synthesis, and Anti-Inflammatory Activity of Novel Quinazolines. Orient. J. Chem. 2017, 33, 707–716. 10.13005/ojc/330217. DOI

Aboraia A. S.; Hara M. A.; Abdelrahman M. H.; Amin M. M.; El-Sabbaghab O. I. Design, Synthesis and COX1/2 Inhibitory Activity of New Quinazoline-5-one Derivatives. J. Adv. Chem. 2017, 13, 5923–5931. 10.24297/jac.v13i12.6019. DOI

Kavitha K.; Srinivasan N.; Hari Babu Y.; Suresh R. Synthesis and Molecular Docking Study of Novel 2-Phenyl Quinazoline-4-(3H)-one Derivative as COX-2 Inhibitor. Indo Am. J. Pharm. Sci. 2019, 06, 4032–4037. 10.5281/zenodo.2566370. DOI

Kumar A.; Sharma S.; Archana; Bajaj K.; Sharma S.; Panwar H.; Singh T.; Srivastava V. K. Some New 2,3,6-Trisubstituted Quinazolinones as Potent Anti-Inflammatory, Analgesic and COX-II Inhibitors. Bioorg. Med. Chem. 2003, 11, 5293–5299. 10.1016/S0968-0896(03)00501-7. PubMed DOI

Sakr A.; Kothayer H.; Ibrahim S. M.; Baraka M. M.; Rezq S. 1,4-Dihydroquinazolin-3(2H)-yl Benzamide Derivatives as Anti-Inflammatory and Analgesic Agents with an Improved Gastric Profile: Design, Synthesis, COX-1/2 Inhibitory Activity and Molecular Docking Study. Bioorg. Chem. 2019, 84, 76–86. 10.1016/j.bioorg.2018.11.030. PubMed DOI

Dvorakova M.; Landa P. Anti-Inflammatory Activity of Natural Stilbenoids: A Review. Pharmacol. Res. 2017, 124, 126–145. 10.1016/j.phrs.2017.08.002. PubMed DOI

Okano M.; Mito J.; Maruyama Y.; Masuda H.; Niwa T.; Nakagawa S.; Nakamura Y.; Matsuura A. Discovery and Structure-Activity Relationships of 4-Aminoquinazoline Derivatives, A Novel Class of Opioid Receptor Like-1 (ORL1) Antagonists. Bioorg. Med. Chem. 2009, 17, 119–132. 10.1016/j.bmc.2008.11.012. PubMed DOI

Jiang Y.; Chen A. C.; Kuang G. T.; Wang S. K.; Ou T. M.; Tan J. H.; Li D.; Huang Z. S. Design, Synthesis and Biological Evaluation of 4-Anilinoquinazoline Derivatives as New c-Myc G-Quadruplex Ligands. Eur. J. Med. Chem. 2016, 122, 264–279. 10.1016/j.ejmech.2016.06.040. PubMed DOI

Miyaura N.; Suzuki A. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. Chem. Rev. 1995, 95, 2457–2483. 10.1021/cr00039a007. DOI

Knights K. M.; Mangoni A. A.; Miners J. O. Defining the COX Inhibitor Selectivity of NSAIDs: Implications for Understanding Toxicity. Expert Rev. Clin. Pharmacol. 2010, 3, 769–776. 10.1586/ecp.10.120. PubMed DOI

Sidhu R. S.; Lee J. Y.; Yuan C.; Smith W. L. Comparison of Cyclooxygenase-1 Crystal Structures: Cross-Talk between Monomers Comprising Cyclooxygenase-1 Homodimers. Biochemistry 2010, 49 (33), 7069–7079. 10.1021/bi1003298. PubMed DOI PMC

Kurumbail R. G.; Stevens A. M.; Gierse J. K.; McDonald J. J.; Stegeman R. A.; Pak J. Y.; Gildehaus D.; iyashiro J. M.; Penning T. D.; Seibert K.; Isakson P. C.; Stallings W. C. Structural Basis for Selective Inhibition of Cyclooxygenase-2 by Anti-Inflammatory Agents. Nature 1996, 384, 644–648. 10.1038/384644a0. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...