CAR T-Cell Production Using Nonviral Approaches
Language English Country Egypt Media electronic-ecollection
Document type Journal Article, Review
PubMed
33855089
PubMed Central
PMC8019376
DOI
10.1155/2021/6644685
Knihovny.cz E-resources
- MeSH
- Cell Culture Techniques methods MeSH
- Receptors, Chimeric Antigen genetics immunology MeSH
- Genetic Vectors genetics MeSH
- Immunotherapy, Adoptive methods MeSH
- Humans MeSH
- Neoplasms immunology therapy MeSH
- T-Lymphocytes immunology transplantation MeSH
- Gene Transfer Techniques * MeSH
- DNA Transposable Elements genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Receptors, Chimeric Antigen MeSH
- DNA Transposable Elements MeSH
Chimeric antigen receptor T-cells (CAR T-cells) represent a novel and promising approach in cancer immunotherapy. According to the World Health Organization (WHO), the number of oncological patients is steadily growing in developed countries despite immense progress in oncological treatments, and the prognosis of individual patients is still relatively poor. Exceptional results have been recorded for CAR T-cell therapy in patients suffering from B-cell malignancies. This success opens up the possibility of using the same approach for other types of cancers. To date, the most common method for CAR T-cell generation is the use of viral vectors. However, dealing with virus-derived vectors brings possible obstacles in the CAR T-cell manufacturing process owing to strict regulations and high cost demands. Alternative approaches may facilitate further development and the transfer of the method to clinical practice. The most promising substitutes for virus-derived vectors are transposon-derived vectors, most commonly sleeping beauty, which offer great coding capability and a safe integration profile while maintaining a relatively low production cost. This review is aimed at summarizing the state of the art of nonviral approaches in CAR T-cell generation, with a unique perspective on the conditions in clinical applications and current Good Manufacturing Practice. If CAR T-cell therapy is to be routinely used in medical practice, the manufacturing cost and complexity need to be as low as possible, and transposon-based vectors seem to meet these criteria better than viral-based vectors.
See more in PubMed
Gross G., Waks T., Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proceedings of the National Academy of Sciences of the United States of America. 1989;86(24):10024–10028. doi: 10.1073/pnas.86.24.10024. PubMed DOI PMC
Porter D. L., Levine B. L., Kalos M., Bagg A., June C. H. Chimeric antigen receptor–modified T cells in chronic lymphoid leukemia. The New England Journal of Medicine. 2011;365(8):725–733. doi: 10.1056/NEJMoa1103849. PubMed DOI PMC
Kalos M., Levine B. L., Porter D. L., et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Science Translational Medicine. 2011;3(95, article 95ra73) doi: 10.1126/scitranslmed.3002842. PubMed DOI PMC
Maher J., Brentjens R. J., Gunset G., Rivière I., Sadelain M. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRζ /CD28 receptor. Nature Biotechnology. 2002;20(1):70–75. doi: 10.1038/nbt0102-70. PubMed DOI
Imai C., Mihara K., Andreansky M., et al. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia. 2004;18(4):676–684. doi: 10.1038/sj.leu.2403302. PubMed DOI
Till B. G., Jensen M. C., Wang J., et al. CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results. Blood. 2012;119(17):3940–3950. doi: 10.1182/blood-2011-10-387969. PubMed DOI PMC
Zhong X.-S., Matsushita M., Plotkin J., Riviere I., Sadelain M. Chimeric antigen receptors combining 4-1BB and CD28 signaling domains augment PI3kinase/AKT/Bcl-XL activation and CD8+ T cell-mediated tumor eradication. Molecular Therapy. 2010;18(2):413–420. doi: 10.1038/mt.2009.210. PubMed DOI PMC
Zhao Y., Wang Q. J., Yang S., et al. A herceptin-based chimeric antigen receptor with modified signaling domains leads to enhanced survival of transduced T lymphocytes and antitumor activity. The Journal of Immunology. 2009;183(9):5563–5574. doi: 10.4049/jimmunol.0900447. PubMed DOI PMC
Kerkar S. P., Muranski P., Kaiser A., et al. Tumor-specific CD8+T cells expressing interleukin-12 eradicate established cancers in lymphodepleted hosts. Cancer Research. 2010;70(17):6725–6734. doi: 10.1158/0008-5472.CAN-10-0735. PubMed DOI PMC
Chmielewski M., Hombach A. A., Abken H. Of CARs and TRUCKs: chimeric antigen receptor (CAR) T cells engineered with an inducible cytokine to modulate the tumor stroma. Immunological Reviews. 2014;257(1):83–90. doi: 10.1111/imr.12125. PubMed DOI
Krenciute G., Prinzing B. L., Yi Z., et al. Transgenic expression of IL15 improves antiglioma activity of IL13Rα2-CAR T cells but results in antigen loss variants. Cancer Immunology Research. 2017;5(7):571–581. doi: 10.1158/2326-6066.CIR-16-0376. PubMed DOI PMC
Avanzi M. P., Yeku O., Li X., et al. Engineered tumor-targeted T cells mediate enhanced anti-tumor efficacy both directly and through activation of the endogenous immune system. Cell Reports. 2018;23(7):2130–2141. doi: 10.1016/j.celrep.2018.04.051. PubMed DOI PMC
Hegde M., Mukherjee M., Grada Z., et al. Tandem CAR T cells targeting HER2 and IL13Rα2 mitigate tumor antigen escape. The Journal of Clinical Investigation. 2016;126(8):3036–3052. doi: 10.1172/JCI83416. PubMed DOI PMC
Morgan R. A., Boyerinas B. Genetic modification of T cells. Biomedicine. 2016;4(2):p. 9. PubMed PMC
Fesnak A. D., June C. H., Levine B. L. Engineered T cells: the promise and challenges of cancer immunotherapy. Nature Reviews. Cancer. 2016;16(9):566–581. doi: 10.1038/nrc.2016.97. PubMed DOI PMC
Cavazzana-Calvo M., Hacein-Bey S., de Saint Basile G., et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science. 2000;288(5466):669–672. doi: 10.1126/science.288.5466.669. PubMed DOI
Hacein-Bey-Abina S., Garrigue A., Wang G. P., et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. The Journal of Clinical Investigation. 2008;118(9):3132–3142. doi: 10.1172/JCI35700. PubMed DOI PMC
Naldini L., Blomer U., Gallay P., et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science. 1996;272(5259):263–267. doi: 10.1126/science.272.5259.263. PubMed DOI
Jarrosson-Wuilleme L., Goujon C., Bernaud J., Rigal D., Darlix J.-L., Cimarelli A. Transduction of nondividing human macrophages with gammaretrovirus-derived vectors. Journal of Virology. 2006;80(3):1152–1159. doi: 10.1128/JVI.80.3.1152-1159.2006. PubMed DOI PMC
Ciuffi A. Mechanisms lentivirus integration site selection. Current Gene Therapy. 2008;8:419–429. 2020, https://www.eurekaselect.com/68097/article. PubMed
Ramanayake S., Bilmon I., Bishop D., et al. Low-cost generation of Good Manufacturing Practice-grade CD19-specific chimeric antigen receptor-expressing T cells using piggyBac gene transfer and patient-derived materials. Cytotherapy. 2015;17(9):1251–1267. doi: 10.1016/j.jcyt.2015.05.013. PubMed DOI
Bouard D., Alazard-Dany N., Cosset F.-L. Viral vectors: from virology to transgene expression. British Journal of Pharmacology. 2009;157(2):153–165. doi: 10.1038/bjp.2008.349. PubMed DOI PMC
Singh H., Moyes J. S. E., Huls M. H., Cooper L. J. N. Manufacture of T cells using the Sleeping Beauty system to enforce expression of a CD19-specific chimeric antigen receptor. Cancer Gene Therapy. 2015;22(2):95–100. doi: 10.1038/cgt.2014.69. PubMed DOI
Chicaybam L., Abdo L., Carneiro M., et al. CAR T cells generated using sleeping beauty transposon vectors and expanded with an EBV-transformed lymphoblastoid cell line display antitumor activity in vitro and in vivo. Human Gene Therapy. 2019;30(4):511–522. doi: 10.1089/hum.2018.218. PubMed DOI
Yant S. R., Meuse L., Chiu W., Ivics Z., Izsvak Z., Kay M. A. Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system. Nature Genetics. 2000;25(1):35–41. doi: 10.1038/75568. PubMed DOI
Izsvák Z., Hackett P. B., Cooper L. J. N., Ivics Z. Translating sleeping beauty transposition into cellular therapies: victories and challenges. BioEssays. 2010;32(9):756–767. doi: 10.1002/bies.201000027. PubMed DOI PMC
Geurts A. M., Yang Y., Clark K. J., et al. Gene transfer into genomes of human cells by the sleeping beauty transposon system. Molecular Therapy. 2003;8(1):108–117. doi: 10.1016/S1525-0016(03)00099-6. PubMed DOI
Jin Z., Maiti S., Huls H., et al. The hyperactive Sleeping Beauty transposase SB100X improves the genetic modification of T cells to express a chimeric antigen receptor. Gene Therapy. 2011;18(9):849–856. doi: 10.1038/gt.2011.40. PubMed DOI PMC
Yant S., Wu X., Huang Y., et al. 817. Nonrandom insertion site preferences for the SB transposon in vitro and in vivo. Molecular Therapy. 2004;9:S309–S310.
Mitchell R. S., Beitzel B. F., Schroder A. R. W., et al. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biology. 2004;2(8, article E234) doi: 10.1371/journal.pbio.0020234. PubMed DOI PMC
Kebriaei P., Singh H., Huls M. H., et al. Phase I trials using sleeping beauty to generate CD19-specific CAR T cells. The Journal of Clinical Investigation. 2016;126(9):3363–3376. doi: 10.1172/JCI86721. PubMed DOI PMC
Huang X., Guo H., Tammana S., et al. Gene transfer efficiency and genome-wide integration profiling of Sleeping Beauty , Tol2 , and piggyBac transposons in human primary T cells. Molecular Therapy. 2010;18(10):1803–1813. doi: 10.1038/mt.2010.141. PubMed DOI PMC
Tsukahara T., Iwase N., Kawakami K., et al. The Tol2 transposon system mediates the genetic engineering of T-cells with CD19-specific chimeric antigen receptors for B-cell malignancies. Gene Therapy. 2015;22(2):209–215. doi: 10.1038/gt.2014.104. PubMed DOI PMC
Urasaki A., Morvan G., Kawakami K. Functional dissection of the Tol 2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition. Genetics. 2006;174(2):639–649. doi: 10.1534/genetics.106.060244. PubMed DOI PMC
Cary L. C., Goebel M., Corsaro B. G., Wang H.-G., Rosen E., Fraser M. J. Transposon mutagenesis of baculoviruses: analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology. 1989;172(1):156–169. doi: 10.1016/0042-6822(89)90117-7. PubMed DOI
Fraser M. J., Clszczon T., Elick T., Bauser C. Precise excision of TTAA-specific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera. Insect Molecular Biology. 1996;5(2):141–151. doi: 10.1111/j.1365-2583.1996.tb00048.x. PubMed DOI
Galvan D. L., Nakazawa Y., Kaja A., et al. Genome-wide mapping of PiggyBac transposon integrations in primary human T cells. Journal of Immunotherapy. 2009;32(8):837–844. doi: 10.1097/CJI.0b013e3181b2914c. PubMed DOI PMC
Gogol-Döring A., Ammar I., Gupta S., et al. Genome-wide profiling reveals remarkable parallels between insertion site selection properties of the MLV retrovirus and the piggyBac transposon in primary human CD4+ T cells. Molecular Therapy. 2016;24(3):592–606. doi: 10.1038/mt.2016.11. PubMed DOI PMC
Wu S. C.-Y., Meir Y.-J. J., Coates C. J., et al. piggyBac is a flexible and highly active transposon as compared to sleeping beauty, Tol2, and Mos1 in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(41):15008–15013. doi: 10.1073/pnas.0606979103. PubMed DOI PMC
Nakazawa Y., Huye L. E., Dotti G., et al. Optimization of the PiggyBac transposon system for the sustained genetic modification of human T lymphocytes. Journal of Immunotherapy. 2009;32(8):826–836. doi: 10.1097/CJI.0b013e3181ad762b. PubMed DOI PMC
Morgan R. A., Yang J. C., Kitano M., Dudley M. E., Laurencot C. M., Rosenberg S. A. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Molecular Therapy. 2010;18(4):843–851. doi: 10.1038/mt.2010.24. PubMed DOI PMC
Yusa K., Zhou L., Li M. A., Bradley A., Craig N. L. A hyperactive piggyBac transposase for mammalian applications. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(4):1531–1536. doi: 10.1073/pnas.1008322108. PubMed DOI PMC
Doherty J. E., Huye L. E., Yusa K., Zhou L., Craig N. L., Wilson M. H. Hyperactive piggyBac gene transfer in human cells and in vivo. Human Gene Therapy. 2012;23(3):311–320. doi: 10.1089/hum.2011.138. PubMed DOI PMC
Cadiñanos J., Bradley A. Generation of an inducible and optimized piggyBac transposon system†. Nucleic Acids Research. 2007;35(12, article e87) doi: 10.1093/nar/gkm446. PubMed DOI PMC
Saito S., Nakazawa Y., Sueki A., et al. Anti-leukemic potency of piggyBac -mediated CD19-specific T cells against refractory Philadelphia chromosome-positive acute lymphoblastic leukemia. Cytotherapy. 2014;16(9):1257–1269. doi: 10.1016/j.jcyt.2014.05.022. PubMed DOI PMC
Wang J., Lupo K. B., Chambers A. M., Matosevic S. Purinergic targeting enhances immunotherapy of CD73+ solid tumors with piggyBac-engineered chimeric antigen receptor natural killer cells. Journal for ImmunoTherapy of Cancer. 2018;6(1):p. 136. doi: 10.1186/s40425-018-0441-8. PubMed DOI PMC
Zhang Z., Jiang D., Yang H., et al. Modified CAR T cells targeting membrane-proximal epitope of mesothelin enhances the antitumor function against large solid tumor. Cell Death & Disease. 2019;10(7):p. 476. doi: 10.1038/s41419-019-1711-1. PubMed DOI PMC
Ma Y., Chen Y., Yan L., et al. EGFRvIII-specific CAR-T cells produced by piggyBac transposon exhibit efficient growth suppression against hepatocellular carcinoma. International Journal of Medical Sciences. 2020;17(10):1406–1414. doi: 10.7150/ijms.45603. PubMed DOI PMC
Ptáčková P., Musil J., Štach M., et al. A new approach to CAR T-cell gene engineering and cultivation using piggyBac transposon in the presence of IL-4, IL-7 and IL-21. Cytotherapy. 2018;20(4):507–520. doi: 10.1016/j.jcyt.2017.10.001. PubMed DOI
Tseng W.-C., Haselton F. R., Giorgio T. D. Mitosis enhances transgene expression of plasmid delivered by cationic liposomes. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression. 1999;1445(1):53–64. doi: 10.1016/S0167-4781(99)00039-1. PubMed DOI
Karikó K., Muramatsu H., Welsh F. A., et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Molecular Therapy. 2008;16(11):1833–1840. doi: 10.1038/mt.2008.200. PubMed DOI PMC
Zhao Y., Zheng Z., Cohen C. J., et al. High - efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation. Molecular Therapy. 2006;13(1):151–159. doi: 10.1016/j.ymthe.2005.07.688. PubMed DOI PMC
Harrer D. C., Simon B., Fujii S., et al. RNA-transfection of γ/δ T cells with a chimeric antigen receptor or an α/β T-cell receptor: a safer alternative to genetically engineered α/β T cells for the immunotherapy of melanoma. BMC Cancer. 2017;17(1):p. 551. doi: 10.1186/s12885-017-3539-3. PubMed DOI PMC
Campillo-Davo D., Fujiki F., Van den Bergh J. M. J., et al. Efficient and nongenotoxic RNA-based engineering of human T cells using tumor-specific T cell receptors with minimal TCR mispairing. Frontiers in Immunology. 2018;9 doi: 10.3389/fimmu.2018.02503. PubMed DOI PMC
Mensali N., Myhre M. R., Dillard P., et al. Preclinical assessment of transiently TCR redirected T cells for solid tumour immunotherapy. Cancer Immunology, Immunotherapy. 2019;68(8):1235–1243. doi: 10.1007/s00262-019-02356-2. PubMed DOI PMC
Mensali N., Myhre M. R., Dillard P., et al. Correction to: preclinical assessment of transiently TCR redirected T cells for solid tumour immunotherapy. Cancer Immunology, Immunotherapy. 2020;69(1):159–161. doi: 10.1007/s00262-019-02409-6. PubMed DOI PMC
Billingsley M. M., Singh N., Ravikumar P., Zhang R., June C. H., Mitchell M. J. Ionizable lipid nanoparticle-mediated mRNA delivery for human CAR T cell engineering. Nano Letters. 2020;20(3):1578–1589. doi: 10.1021/acs.nanolett.9b04246. PubMed DOI PMC
Grabundzija I., Irgang M., Mátés L., et al. Comparative analysis of transposable element vector systems in human cells. Molecular Therapy. 2010;18(6):1200–1209. doi: 10.1038/mt.2010.47. PubMed DOI PMC
Field A.-C., Vink C., Gabriel R., et al. Comparison of lentiviral and sleeping beauty mediated αβ T cell receptor gene transfer. PLoS One. 2013;8(6, article e68201) doi: 10.1371/journal.pone.0068201. PubMed DOI PMC
Beard B. C., Dickerson D., Beebe K., et al. Comparison of HIV-derived lentiviral and MLV-based gammaretroviral vector integration sites in primate repopulating cells. Molecular Therapy. 2007;15(7):1356–1365. doi: 10.1038/sj.mt.6300159. PubMed DOI
Schröder A. R. W., Shinn P., Chen H., Berry C., Ecker J. R., Bushman F. HIV-1 integration in the human genome favors active genes and local hotspots. Cell. 2002;110(4):521–529. doi: 10.1016/S0092-8674(02)00864-4. PubMed DOI
Hartmann J., Schüßler-Lenz M., Bondanza A., Buchholz C. J. Clinical development of CAR T cells—challenges and opportunities in translating innovative treatment concepts. EMBO Molecular Medicine. 2017;9(9):1183–1197. doi: 10.15252/emmm.201607485. PubMed DOI PMC
Vormittag P., Gunn R., Ghorashian S., Veraitch F. S. A guide to manufacturing CAR T cell therapies. Current Opinion in Biotechnology. 2018;53:164–181. doi: 10.1016/j.copbio.2018.01.025. PubMed DOI
Merten O.-W., Hebben M., Bovolenta C. Production of lentiviral vectors. Molecular Therapy - Methods & Clinical Development. 2016;3:p. 16017. doi: 10.1038/mtm.2016.17. PubMed DOI PMC
Dull T., Zufferey R., Kelly M., et al. A third-generation lentivirus vector with a conditional packaging system. Journal of Virology. 1998;72(11):8463–8471. doi: 10.1128/JVI.72.11.8463-8471.1998. PubMed DOI PMC
Sanber K. S., Knight S. B., Stephen S. L., et al. Construction of stable packaging cell lines for clinical lentiviral vector production. Scientific Reports. 2015;5(1) doi: 10.1038/srep09021. PubMed DOI PMC
Turtle C. J., Hanafi L.-A., Berger C., et al. CD19 CAR–T cells of defined CD4+: CD8+ composition in adult B cell ALL patients. Journal of Clinical Investigation. 2016;126(6):2123–2138. doi: 10.1172/JCI85309. PubMed DOI PMC
Kochenderfer J. N., Somerville R., Lu L., et al. Anti-CD19 CAR T cells administered after low-dose chemotherapy can induce remissions of chemotherapy-refractory diffuse large B-cell lymphoma. Blood. 2014;124(21):550–550. doi: 10.1182/blood.V124.21.550.550. DOI
Liu E., Marin D., Banerjee P., et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. The New England Journal of Medicine. 2020;382(6):545–553. doi: 10.1056/NEJMoa1910607. PubMed DOI PMC
Srour S. A., Singh H., McCarty J., et al. Long-term outcomes of Sleeping Beauty-generated CD19-specific CAR T-cell therapy for relapsed-refractory B-cell lymphomas. Blood. 2020;135(11):862–865. doi: 10.1182/blood.2019002920. PubMed DOI PMC
Magnani C. F., Gaipa G., Lussana F., et al. Sleeping Beauty–engineered CAR T cells achieve antileukemic activity without severe toxicities. The Journal of Clinical Investigation. 2020;130(11):6021–6033. doi: 10.1172/JCI138473. PubMed DOI PMC
Singh H., Figliola M. J., Dawson M. J., et al. Manufacture of clinical-grade CD19-specific T cells stably expressing chimeric antigen receptor using Sleeping Beauty system and artificial antigen presenting cells. PLoS One. 2013;8(5, article e64138) doi: 10.1371/journal.pone.0064138. PubMed DOI PMC
Fielding A. K., Richards S. M., Chopra R., et al. Outcome of 609 adults after relapse of acute lymphoblastic leukemia (ALL); an MRC UKALL12/ECOG 2993 study. Blood. 2007;109(3):944–950. doi: 10.1182/blood-2006-05-018192. PubMed DOI
Raja Manuri P. V., Wilson M. H., Maiti S. N., et al. piggyBac transposon/transposase system to generate CD19-specific T cells for the treatment of B-lineage malignancies. Human Gene Therapy. 2010;21(4):427–437. doi: 10.1089/hum.2009.114. PubMed DOI PMC
Gee A. P. GMP CAR-T cell production. Best Practice & Research Clinical Haematology. 2018;31(2):126–134. doi: 10.1016/j.beha.2018.01.002. PubMed DOI
Fernández L., Fernández A., Mirones I., et al. GMP-compliant manufacturing of NKG2D CAR memory T cells using CliniMACS prodigy. Frontiers in Immunology. 2019;10 doi: 10.3389/fimmu.2019.02361. PubMed DOI PMC
Mock U., Nickolay L., Philip B., et al. Automated manufacturing of chimeric antigen receptor T cells for adoptive immunotherapy using CliniMACS prodigy. Cytotherapy. 2016;18(8):1002–1011. doi: 10.1016/j.jcyt.2016.05.009. PubMed DOI
Rojewski M. T., Fekete N., Baila S., et al. GMP-compliant isolation and expansion of bone marrow-derived MSCs in the closed, automated device quantum cell expansion system. Cell Transplantation. 2013;22(11):1981–2000. doi: 10.3727/096368912X657990. PubMed DOI
Coeshott C., Vang B., Jones M., Nankervis B. Large-scale expansion and characterization of CD3+ T-cells in the quantum® cell expansion system. Journal of Translational Medicine. 2019;17(1):p. 258. doi: 10.1186/s12967-019-2001-5. PubMed DOI PMC
Walker A., Johnson R. Commercialization of cellular immunotherapies for cancer. Biochemical Society Transactions. 2016;44(2):329–332. doi: 10.1042/BST20150240. PubMed DOI
Wiesinger M., März J., Kummer M., et al. Clinical-scale production of CAR-T cells for the treatment of melanoma patients by mRNA transfection of a CSPG4-specific CAR under full GMP compliance. Cancers. 2019;11(8):p. 1198. doi: 10.3390/cancers11081198. PubMed DOI PMC
Bouet-Toussaint F., Genetel N., Rioux-Leclercq N., et al. Interleukin-2 expanded lymphocytes from lymph node and tumor biopsies of human renal cell carcinoma, breast and ovarian cancer. European Cytokine Network. 2000;11(2):217–224. PubMed
Crompton J. G., Sukumar M., Restifo N. P. Uncoupling T-cell expansion from effector differentiation in cell-based immunotherapy. Immunological Reviews. 2014;257(1):264–276. doi: 10.1111/imr.12135. PubMed DOI PMC
Kaartinen T., Luostarinen A., Maliniemi P., et al. Low interleukin-2 concentration favors generation of early memory T cells over effector phenotypes during chimeric antigen receptor T-cell expansion. Cytotherapy. 2017;19(6):689–702. doi: 10.1016/j.jcyt.2017.03.067. PubMed DOI
Sabatino M., Hu J., Sommariva M., et al. Generation of clinical-grade CD19-specific CAR-modified CD8+ memory stem cells for the treatment of human B-cell malignancies. Blood. 2016;128(4):519–528. doi: 10.1182/blood-2015-11-683847. PubMed DOI PMC
Hinrichs C. S., Spolski R., Paulos C. M., et al. IL-2 and IL-21 confer opposing differentiation programs to CD8+ T cells for adoptive immunotherapy. Blood. 2008;111(11):5326–5333. doi: 10.1182/blood-2007-09-113050. PubMed DOI PMC
Cieri N., Camisa B., Cocchiarella F., et al. IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors. Blood. 2013;121(4):573–584. doi: 10.1182/blood-2012-05-431718. PubMed DOI
Zhou J., Jin L., Wang F., Zhang Y., Liu B., Zhao T. Chimeric antigen receptor T (CAR-T) cells expanded with IL-7/IL-15 mediate superior antitumor effects. Protein & Cell. 2019;10(10):764–769. doi: 10.1007/s13238-019-0643-y. PubMed DOI PMC
Leen A. M., Sukumaran S., Watanabe N., et al. Reversal of tumor immune inhibition using a chimeric cytokine receptor. Molecular Therapy. 2014;22(6):1211–1220. doi: 10.1038/mt.2014.47. PubMed DOI PMC
Wang Y., Jiang H., Luo H., et al. An IL-4/21 inverted cytokine receptor improving CAR-T cell potency in immunosuppressive solid-tumor microenvironment. Frontiers in Immunology. 2019;10 doi: 10.3389/fimmu.2019.01691. PubMed DOI PMC
Chavez A. T., McKenna M. K., Canestrari E., et al. Expanding CAR T cells in human platelet lysate renders T cells with in vivo longevity. Journal for Immunotherapy of Cancer. 2019;7(1):p. 330. doi: 10.1186/s40425-019-0804-9. PubMed DOI PMC
Stemberger C., Dreher S., Tschulik C., et al. Novel serial positive enrichment technology enables clinical multiparameter cell sorting. PLoS One. 2012;7(4, article e35798) doi: 10.1371/journal.pone.0035798. PubMed DOI PMC
McBride J. A., Striker R. Imbalance in the game of T cells: what can the CD4/CD8 T-cell ratio tell us about HIV and health? PLoS Pathogens. 2017;13(11, article e1006624) doi: 10.1371/journal.ppat.1006624. PubMed DOI PMC
Mackall C. L., Fleisher T. A., Brown M. R., et al. Age, thymopoiesis, and CD4+ T-lymphocyte regeneration after intensive chemotherapy. The New England Journal of Medicine. 1995;332(3):143–149. doi: 10.1056/NEJM199501193320303. PubMed DOI
Graef P., Buchholz V. R., Stemberger C., et al. Serial transfer of single-cell-derived immunocompetence reveals stemness of CD8+ central memory T cells. Immunity. 2014;41(1):116–126. doi: 10.1016/j.immuni.2014.05.018. PubMed DOI
Buchholz V. R., Flossdorf M., Hensel I., et al. Disparate individual fates compose robust CD8+ T cell immunity. Science. 2013;340(6132):630–635. doi: 10.1126/science.1235454. PubMed DOI
Gattinoni L., Lugli E., Ji Y., et al. A human memory T cell subset with stem cell-like properties. Nature Medicine. 2011;17(10):1290–1297. doi: 10.1038/nm.2446. PubMed DOI PMC
Sommermeyer D., Hudecek M., Kosasih P. L., et al. Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia. 2016;30(2):492–500. doi: 10.1038/leu.2015.247. PubMed DOI PMC
Moeller M., Kershaw M. H., Cameron R., et al. Sustained antigen-specific antitumor recall response mediated by gene-modified CD4+ T helper-1 and CD8+ T cells. Cancer Research. 2007;67(23):11428–11437. doi: 10.1158/0008-5472.CAN-07-1141. PubMed DOI