Molybdenum Oxide Supported on Ti3AlC2 is an Active Reverse Water-Gas Shift Catalyst
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
    PubMed
          
           33868834
           
          
          
    PubMed Central
          
           PMC8045458
           
          
          
    DOI
          
           10.1021/acssuschemeng.0c07881
           
          
          
  
    Knihovny.cz E-zdroje
    
  
              
      
- Publikační typ
- časopisecké články MeSH
MAX phases are layered ternary carbides or nitrides that are attractive for catalysis applications due to their unusual set of properties. They show high thermal stability like ceramics, but they are also tough, ductile, and good conductors of heat and electricity like metals. Here, we study the potential of the Ti3AlC2 MAX phase as a support for molybdenum oxide for the reverse water-gas shift (RWGS) reaction, comparing this new catalyst to more traditional materials. The catalyst showed higher turnover frequency values than MoO3/TiO2 and MoO3/Al2O3 catalysts, due to the outstanding electronic properties of the Ti3AlC2 support. We observed a charge transfer effect from the electronically rich Ti3AlC2 MAX phase to the catalyst surface, which in turn enhances the reducibility of MoO3 species during reaction. The redox properties of the MoO3/Ti3AlC2 catalyst improve its RWGS intrinsic activity compared to TiO2- and Al2O3-based catalysts.
Zobrazit více v PubMed
Hartmann D. L.Anthropogenic Climate Change. Global Physical Climatology, 2nd ed.; Elsevier Inc., 2016; pp 397–425.
Vallero D. A.Air Pollution Biogeochemistry. Air Pollution Calculations; Elsevier Inc., 2019; pp 175–206.
Shell International B. V . Shell Scenarios. The Numbers behind Sky. 2018, https://www.shell.com/energy-and-innovation/the-energy-future/scenarios/shell-scenario-sky.html (accessed August 2020).
Lüthi D.; Le Floch M.; Bereiter B.; Blunier T.; Barnola J.-M.; Siegenthaler U.; Raynaud D.; Jouzel J.; Fischer H.; Kawamura K.; Stocker T. F. High-Resolution Carbon Dioxide Concentration Record 650,000-800,000 Years before Present. Nature 2008, 453, 379–382. 10.1038/nature06949. PubMed DOI
Sanz-Pérez E. S.; Murdock C. R.; Didas S. A.; Jones C. W. Direct Capture of CO2 from Ambient Air. Chem. Rev. 2016, 116, 11840–11876. 10.1021/acs.chemrev.6b00173. PubMed DOI
Kothandaraman A.; Nord L.; Bolland O.; Herzog H. J.; McRae G. J. Comparison of Solvents for Post-Combustion Capture of CO2 by Chemical Absorption. Energy Procedia 2009, 1, 1373–1380. 10.1016/j.egypro.2009.01.180. DOI
Gnanakumar E. S.; Chandran N.; Kozhevnikov I. V.; Grau-Atienza A.; Ramos Fernández E. V.; Sepulveda-Escribano A.; Shiju N. R. Highly Efficient Nickel-Niobia Composite Catalysts for Hydrogenation of CO2 to Methane. Chem. Eng. Sci. 2019, 194, 2–9. 10.1016/j.ces.2018.08.038. DOI
Ronda-lloret M.; Wang Y.; Oulego P.; Rothenberg G.; Tu X.; Shiju N. R. CO2 Hydrogenation at Atmospheric Pressure and Low Temperature Using Plasma-Enhanced Catalysis over Supported Cobalt Oxide Catalysts. ACS Sustainable Chem. Eng. 2020, 8, 17397–17407. 10.1021/acssuschemeng.0c05565. PubMed DOI PMC
Daza Y. A.; Kuhn J. N. CO2 Conversion by Reverse Water Gas Shift Catalysis: Comparison of Catalysts, Mechanisms and Their Consequences for CO2 Conversion to Liquid Fuels. RSC Adv. 2016, 6, 49675–49691. 10.1039/c6ra05414e. DOI
Ronda-Lloret M.; Rothenberg G.; Shiju N. R. A Critical Look at Direct Catalytic Hydrogenation of Carbon Dioxide to Olefins. ChemSusChem 2019, 12, 3896–3914. 10.1002/cssc.201900915. PubMed DOI
Wang W.; Wang S.; Ma X.; Gong J. Recent Advances in Catalytic Hydrogenation of Carbon Dioxide. Chem. Soc. Rev. 2011, 40, 3703–3727. 10.1039/c1cs15008a. PubMed DOI
Wei J.; Ge Q.; Yao R.; Wen Z.; Fang C.; Guo L.; Xu H.; Sun J. Directly Converting CO2 into a Gasoline Fuel. Nat. Commun. 2017, 8, 15174.10.1038/ncomms15174. PubMed DOI PMC
Yang L.; Pastor-Pérez L.; Gu S.; Sepúlveda-Escribano A.; Reina T. R. Highly Efficient Ni/CeO2-Al2O3 Catalysts for CO2 Upgrading via Reverse Water-Gas Shift: Effect of Selected Transition Metal Promoters. Appl. Catal., B 2018, 232, 464–471. 10.1016/j.apcatb.2018.03.091. DOI
Su X.; Yang X.; Zhao B.; Huang Y. Designing of Highly Selective and High-Temperature Endurable RWGS Heterogeneous Catalysts: Recent Advances and the Future Directions. J. Energy Chem. 2017, 26, 854–867. 10.1016/j.jechem.2017.07.006. DOI
Ronda-Lloret M.; Rico-Francés S.; Sepúlveda-Escribano A.; Ramos-Fernandez E. V. CuOx/CeO2 Catalyst Derived from Metal Organic Framework for Reverse Water-Gas Shift Reaction. Appl. Catal., A 2018, 562, 28–36. 10.1016/j.apcata.2018.05.024. DOI
Gharibi Kharaji A.; Shariati A. Performance Comparison of Two Newly Developed Bimetallic (X-Mo/Al2O3, X=Fe or Co) Catalysts for Reverse Water Gas Shift Reaction. China Pet. Process. Petrochem. Technol. 2016, 18, 51–58.
Kharaji A. G.; Shariati A.; Takassi M. A. A Novel γ-Alumina Supported Fe-Mo Bimetallic Catalyst for Reverse Water Gas Shift Reaction. Chin. J. Chem. Eng. 2013, 21, 1007–1014. 10.1016/S1004-9541(13)60573-X. DOI
Kharaji A. G.; Shariati A.; Ostadi M. Development of Ni-Mo/Al2O3 Catalyst for Reverse Water Gas Shift (RWGS) Reaction. J. Nanosci. Nanotechnol. 2014, 14, 6841–6847. 10.1166/jnn.2014.8962. PubMed DOI
Carrasquillo-Flores R.; Ro I.; Kumbhalkar M. D.; Burt S.; Carrero C. A.; Alba-Rubio A. C.; Miller J. T.; Hermans I.; Huber G. W.; Dumesic J. A. Reverse Water-Gas Shift on Interfacial Sites Formed by Deposition of Oxidized Molybdenum Moieties onto Gold Nanoparticles. J. Am. Chem. Soc. 2015, 137, 10317–10325. 10.1021/jacs.5b05945. PubMed DOI
Ro I.; Sener C.; Stadelman T. M.; Ball M. R.; Venegas J. M.; Burt S. P.; Hermans I.; Dumesic J. A.; Huber G. W. Measurement of Intrinsic Catalytic Activity of Pt Monometallic and Pt-MoOx Interfacial Sites over Visible Light Enhanced PtMoOx/SiO2 Catalyst in Reverse Water Gas Shift Reaction. J. Catal. 2016, 344, 784–794. 10.1016/j.jcat.2016.08.011. DOI
Akande S. O.; Chroneos A.; Vasilopoulou M.; Kennou S.; Schwingenschlögl U. Vacancy Formation in MoO3: Hybrid Density Functional Theory and Photoemission Experiments. J. Mater. Chem. C 2016, 4, 9526–9531. 10.1039/c6tc02571d. DOI
Borgschulte A.; Sambalova O.; Delmelle R.; Jenatsch S.; Hany R.; Nüesch F. Hydrogen Reduction of Molybdenum Oxide at Room Temperature. Sci. Rep. 2017, 7, 40761.10.1038/srep40761. PubMed DOI PMC
Wang L. C.; Widmann D.; Behm R. J. Reactive Removal of Surface Oxygen by H2, CO and CO/H2 on a Au/CeO2 Catalyst and Its Relevance to the Preferential CO Oxidation (PROX) and Reverse Water Gas Shift (RWGS) Reaction. Catal. Sci. Technol. 2015, 5, 925–941. 10.1039/c4cy01030b. DOI
Chen Y.; Wang H.; Burch R.; Hardacre C.; Hu P. New Insight into Mechanisms in Water-Gas-Shift Reaction on Au/CeO2 (111): A Density Functional Theory and Kinetic Study. Faraday Discuss. 2011, 152, 121–133. 10.1039/c1fd00019e. PubMed DOI
Deelen T. W.; Mejía C. H.; Jong K. P. Control of Metal-Support Interactions in Heterogeneous Catalysts to Enhance Activity and Selectivity. Nat. Catal. 2019, 2, 955–970. 10.1038/s41929-019-0364-x. DOI
Beckers J.; Rothenberg G. Redox Properties of Doped and Supported Copper-Ceria Catalysts. Dalton Trans. 2008, 46, 6573–6578. 10.1039/b809769k. PubMed DOI
Slot T. K.; Yue F.; Xu H.; Ramos-Fernandez E. V.; Sepúlveda-Escribano A.; Sofer Z.; Rothenberg G.; Shiju N. R. Surface Oxidation of Ti3C2Tx Enhances the Catalytic Activity of Supported Platinum Nanoparticles in Ammonia Borane Hydrolysis. 2D Mater. 2020, 8, 015001.10.1088/2053-1583/ababef. DOI
Barsoum M.; El-Raghy T. The MAX Phases: Unique New Carbide and Nitride Materials. Am. Sci. 2001, 89, 334–343. 10.1511/2001.28.736. DOI
Boatemaa L.; Bosch M.; Farle A. S.; Bei G. P.; Zwaag S.; Sloof W. G. Autonomous High-Temperature Healing of Surface Cracks in Al2O3 Containing Ti2AlC Particles. J. Am. Ceram. Soc. 2018, 101, 5684–5693. 10.1111/jace.15793. DOI
Barsoum M. W.Physical Properties of the MAX Phases. Encyclopedia of Materials: Science and Technology, 2nd ed.; Elsevier Ltd, 2006; pp 1–11.
Medkour Y.; Roumili A.; Maouche D.; Louail L.. Electrical Properties of MAX Phases. Advances in Science and Technology of Mn+1AXn Phases; Woodhead Publishing Limited, 2012; pp 159–175.
Wang X. H.; Zhou Y. C. Oxidation Behavior of Ti3AlC2 at 1000-1400 °C in Air. Corros. Sci. 2003, 45, 891–907. 10.1016/S0010-938X(02)00177-4. DOI
Sloof W. G.; Pei R.; McDonald S. A.; Fife J. L.; Shen L.; Boatemaa L.; Farle A.-S.; Yan K.; Zhang X.; Van Der Zwaag S.; Lee P. D.; Withers P. J. Repeated Crack Healing in MAX-Phase Ceramics Revealed by 4D in Situ Synchrotron X-Ray Tomographic Microscopy. Sci. Rep. 2016, 6, 23040.10.1038/srep23040. PubMed DOI PMC
Eklund P.; Beckers M.; Jansson U.; Högberg H.; Hultman L. The MN+1AXn Phases: Materials Science and Thin-Film Processing. Thin Solid Films 2010, 518, 1851–1878. 10.1016/j.tsf.2009.07.184. DOI
Ng W. H. K.; Gnanakumar E. S.; Batyrev E.; Sharma S. K.; Pujari P. K.; Greer H. F.; Zhou W.; Sakidja R.; Rothenberg G.; Barsoum M. W.; Shiju N. R. The Ti3AlC2 MAX Phase as an Efficient Catalyst for Oxidative Dehydrogenation of n-Butane. Angew. Chem., Int. Ed. 2018, 57, 1485–1490. 10.1002/anie.201702196. PubMed DOI PMC
Ronda-Lloret M.; Marakatti V. S.; Sloof W. G.; Delgado J. J.; Sepúlveda-Escribano A.; Ramos-Fernandez E. V.; Rothenberg G.; Shiju N. R. Butane Dry Reforming Catalyzed by Cobalt Oxide Supported on Ti2AlC MAX Phase. ChemSusChem 2020, 13, 6401–6408. 10.1002/cssc.202001633. PubMed DOI PMC
Trandafir M. M.; Neaţu F.; Chirica I. M.; Neaţu Ş.; Kuncser A. C.; Cucolea E. I.; Natu V.; Barsoum M. W.; Florea M. Highly Efficient Ultralow Pd Loading Supported on MAX Phases for Chemoselective Hydrogenation. ACS Catal. 2020, 10, 5899–5908. 10.1021/acscatal.0c00082. DOI
Clark A. H.; Imbao J.; Frahm R.; Nachtegaal M. ProQEXAFS: A Highly Optimized Parallelized Rapid Processing Software for QEXAFS Data. J. Synchrotron Radiat. 2020, 27, 551–557. 10.1107/S1600577519017053. PubMed DOI PMC
Ravel B.; Newville M. ATHENA, ARTEMIS, HEPHAESTUS: Data Analysis for X-Ray Absorption Spectroscopy Using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537–541. 10.1107/S0909049505012719. PubMed DOI
Andersson G.; Magnéli A.; Sillén L. G.; Rottenberg M. On the Crystal Structure of Molybdenum Trioxide. Acta Chem. Scand. 1950, 4, 793–797. 10.3891/acta.chem.scand.04-0793. DOI
Liu X.; Khan M.; Liu W.; Xiang W.; Guan M.; Jiang P.; Cao W. Synthesis of Nanocrystalline Ga-TiO2 Powders by Mild Hydrothermal Method and Their Visible Light Photoactivity. Ceram. Int. 2015, 41, 3075–3080. 10.1016/j.ceramint.2014.10.151. DOI
Inzani K.; Nematollahi M.; Vullum-Bruer F.; Grande T.; Reenaas T. W.; Selbach S. M. Electronic Properties of Reduced Molybdenum Oxides. Phys. Chem. Chem. Phys. 2017, 19, 9232–9245. 10.1039/c7cp00644f. PubMed DOI
Papageridis K. N.; Siakavelas G.; Charisiou N. D.; Avraam D. G.; Tzounis L.; Kousi K.; Goula M. A. Comparative Study of Ni, Co, Cu Supported on γ-Alumina Catalysts for Hydrogen Production via the Glycerol Steam Reforming Reaction. Fuel Process. Technol. 2016, 152, 156–175. 10.1016/j.fuproc.2016.06.024. DOI
Jongsomjit B.; Panpranot J.; Goodwin J. G. Co-Support Compound Formation in Alumina-Supported Cobalt Catalysts. J. Catal. 2001, 204, 98–109. 10.1006/jcat.2001.3387. DOI
Chen K.; Qiu N.; Deng Q.; Kang M.-H.; Yang H.; Baek J.-U.; Koh Y.-H.; Du S.; Huang Q.; Kim H.-E. Cytocompatibility of Ti3AlC2, Ti3SiC2, and Ti2AlN: In Vitro Tests and First-Principles Calculations. ACS Biomater. Sci. Eng. 2017, 3, 2293–2301. 10.1021/acsbiomaterials.7b00432. PubMed DOI
Wang X. H.; Zhou Y. C. Oxidation Behavior of Ti3AlC2 Powders in Flowing Air. J. Mater. Chem. 2002, 12, 2781–2785. 10.1039/b203644d. DOI
White R. T.; Thibau E. S.; Lu Z.-H. Interface Structure of MoO3 on Organic Semiconductors. Sci. Rep. 2016, 6, 21109.10.1038/srep21109. PubMed DOI PMC
Xiang D.; Han C.; Zhang J.; Chen W. Gap States Assisted MoO3 Nanobelt Photodetector with Wide Spectrum Response. Sci. Rep. 2015, 4, 4891.10.1038/srep04891. PubMed DOI PMC
Xie F.; Choy W. C. H.; Wang C.; Li X.; Zhang S.; Hou J. Low-Temperature Solution-Processed Hydrogen Molybdenum and Vanadium Bronzes for an Efficient Hole-Transport Layer in Organic Electronics. Adv. Mater. 2013, 25, 2051–2055. 10.1002/adma.201204425. PubMed DOI
Zhao X.; Jia W.; Wu X.; Lv Y.; Qiu J.; Guo J.; Wang X.; Jia D.; Yan J.; Wu D. Ultrafine MoO3 Anchored in Coal-Based Carbon Nanofiber as Anode for Advanced Lithium-Ion Batteries. Carbon 2020, 156, 445–452. 10.1016/j.carbon.2019.09.065. DOI
Leliveld R. G.; Van Dillen A. J.; Geus J. W.; Koningsberger D. C. A Mo-K Edge XAFS Study of the Metal Sulfide-Support Interaction in (Co)Mo Supported Alumina and Titania Catalysts. J. Catal. 1997, 165, 184–196. 10.1006/jcat.1997.1480. DOI
Wang J.; Boelens H. F. M.; Thathagar M. B.; Rothenberg G. In Situ Spectroscopic Analysis of Nanocluster Formation. ChemPhysChem 2004, 5, 93–98. 10.1002/cphc.200300859. PubMed DOI
Caro C.; Thirunavukkarasu K.; Anilkumar M.; Shiju N. R.; Rothenberg G. Selective Autooxidation of Ethanol over Titania-Supported Molybdenum Oxide Catalysts: Structure and Reactivity. Adv. Synth. Catal. 2012, 354, 1327–1336. 10.1002/adsc.201000841. PubMed DOI PMC
Whitlow J. E.; Parrish C. E. Operation, Modeling and Analysis of the Reverse Water Gas Shift Process. AIP Conf. Proc. 2003, 654, 1116–1123. 10.1063/1.1541409. DOI
Zhang Q.; Pastor-Pérez L.; Jin W.; Gu S.; Reina T. R. Understanding the Promoter Effect of Cu and Cs over Highly Effective Β-Mo2C Catalysts for the Reverse Water-Gas Shift Reaction. Appl. Catal., B 2019, 244, 889–898. 10.1016/j.apcatb.2018.12.023. DOI
Anasori B.; Dahlqvist M.; Halim J.; Moon E. J.; Lu J.; Hosler B. C.; Caspi E. a. N.; May S. J.; Hultman L.; Eklund P.; Rosén J.; Barsoum M. W. Experimental and Theoretical Characterization of Ordered MAX Phases Mo2TiAlC2 and Mo2Ti2AlC3. J. Appl. Phys. 2015, 118, 094304.10.1063/1.4929640. DOI
Shiju N. R.; Liang X.; Weimer A. W.; Liang C.; Dai S.; Guliants V. V. The Role of Surface Basal Planes of Layered Mixed Metal Oxides in Selective Transformation of Lower Alkanes: Propane Ammoxidation over Surface Ab Planes of Mo-V-Te-Nb-O M1 Phase. J. Am. Chem. Soc. 2008, 130, 5850–5851. 10.1021/ja800575v. PubMed DOI
Shiju N. R.; Rondinone A. J.; Mullins D. R.; Schwartz V.; Overbury S. H.; Guliants V. V. XANES Study of Hydrothermal Mo-V-Based Mixed Oxide M1-Phase Catalysts for the (Amm)Oxidation of Propane. Chem. Mater. 2008, 20, 6611–6616. 10.1021/cm800546h. DOI
Spencer N. D.; Pereira C. J. Partial Oxidation of CH4 to HCHO over a MoO3-SiO2 Catalyst: A Kinetic Study. AIChE J. 1987, 33, 1808–1812. 10.1002/aic.690331107. DOI
Tatsumi T.; Muramatsu A.; Yokota K.; Tominaga H. Mechanistic Study on the Alcohol Synthesis over Molybdenum Catalysts. J. Catal. 1989, 115, 388–398. 10.1016/0021-9517(89)90043-2. DOI
Kim H.-G.; Lee K. H.; Lee J. S. Carbon Monoxide Hydrogenation over Molybdenum Carbide Catalysts. Res. Chem. Intermed. 2000, 26, 427–443. 10.1163/156856700X00435. DOI
Muramatsu A.; Tatsumi T.; Tominaga H. Active Species of Molybdenum for Alcohol Synthesis from Carbon Monoxide-Hydrogen. J. Phys. Chem. 1992, 96, 1334–1340. 10.1021/j100182a058. DOI
Nacimiento F.; Cabello M.; Alcántara R.; Pérez-Vicente C.; Lavela P.; Tirado J. L. Exploring an Aluminum Ion Battery Based on Molybdite as Working Electrode and Ionic Liquid as Electrolyte. J. Electrochem. Soc. 2018, 165, A2994–A2999. 10.1149/2.0391813jes. DOI
Karpenko A.; Leppelt R.; Cai J.; Plzak V.; Chuvilin A.; Kaiser U.; Behm R. Deactivation of a Au/CeO2 Catalyst during the Low-Temperature Water-Gas Shift Reaction and Its Reactivation: A Combined TEM, XRD, XPS, DRIFTS, and Activity Study. J. Catal. 2007, 250, 139–150. 10.1016/j.jcat.2007.05.016. DOI
Wang L. C.; Tahvildar Khazaneh M.; Widmann D.; Behm R. J. TAP Reactor Studies of the Oxidizing Capability of CO2 on a Au/CeO2 Catalyst-A First Step toward Identifying a Redox Mechanism in the Reverse Water-Gas Shift Reaction. J. Catal. 2013, 302, 20–30. 10.1016/j.jcat.2013.02.021. DOI
Puigdollers A. R.; Schlexer P.; Tosoni S.; Pacchioni G. Increasing Oxide Reducibility: The Role of Metal/Oxide Interfaces in the Formation of Oxygen Vacancies. ACS Catal. 2017, 7, 6493–6513. 10.1021/acscatal.7b01913. DOI
Álvarez A.; Borges M.; Corral-Pérez J. J.; Olcina J. G.; Hu L.; Cornu D.; Huang R.; Stoian D.; Urakawa A. CO2 Activation over Catalytic Surfaces. ChemPhysChem 2017, 18, 3135–3141. 10.1002/cphc.201700782. PubMed DOI
