No Evidence for Trade-Offs Between Lifespan, Fecundity, and Basal Metabolic Rate Mediated by Liver Fatty Acid Composition in Birds

. 2021 ; 9 () : 638501. [epub] 20210329

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33869185

The fatty acid composition of biological membranes has been hypothesised to be a key molecular adaptation associated with the evolution of metabolic rates, ageing, and life span - the basis of the membrane pacemaker hypothesis (MPH). MPH proposes that highly unsaturated membranes enhance cellular metabolic processes while being more prone to oxidative damage, thereby increasing the rates of metabolism and ageing. MPH could, therefore, provide a mechanistic explanation for trade-offs between longevity, fecundity, and metabolic rates, predicting that short-lived species with fast metabolic rates and higher fecundity would have greater levels of membrane unsaturation. However, previous comparative studies testing MPH provide mixed evidence regarding the direction of covariation between fatty acid unsaturation and life span or metabolic rate. Moreover, some empirical studies suggest that an n-3/n-6 PUFA ratio or the fatty acid chain length, rather than the overall unsaturation, could be the key traits coevolving with life span. In this study, we tested the coevolution of liver fatty acid composition with maximum life span, annual fecundity, and basal metabolic rate (BMR), using a recently published data set comprising liver fatty acid composition of 106 avian species. While statistically controlling for the confounding effects of body mass and phylogeny, we found no support for long life span evolving with low fatty acid unsaturation and only very weak support for fatty acid unsaturation acting as a pacemaker of BMR. Moreover, our analysis provided no evidence for the previously reported links between life span and n-3 PUFA/total PUFA or MUFA proportion. Our results rather suggest that long life span evolves with long-chain fatty acids irrespective of their degree of unsaturation as life span was positively associated with at least one long-chain fatty acid of each type (i.e., SFA, MUFA, n-6 PUFA, and n-3 PUFA). Importantly, maximum life span, annual fecundity, and BMR were associated with different fatty acids or fatty acid indices, indicating that longevity, fecundity, and BMR coevolve with different aspects of fatty acid composition. Therefore, in addition to posing significant challenges to MPH, our results imply that fatty acid composition does not pose an evolutionary constraint underpinning life-history trade-offs at the molecular level.

Zobrazit více v PubMed

Barja G. (2013). Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid. Redox Signal. 19 1420–1445. 10.1089/ars.2012.5148 PubMed DOI PMC

Berry D. A., Hochberg Y. (1999). Bayesian perspectives on multiple comparisons. J. Statist. Plan. Infer. 82 215–227. 10.1016/S0378-3758(99)00044-0 DOI

BirdLife International and Handbook of the Birds of the World (2018). Bird Species Distribution Maps of the World. Version 2018.1. Available online at: http://datazone.birdlife.org/species/requestdis (accessed November 29, 2019).

Bouckaert R., Vaughan T. G., Barido-Sottani J., Duchêne S., Fourment M., Gavryushkina A., et al. (2019). BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15:e1006650. 10.1371/journal.pcbi.1006650 PubMed DOI PMC

Bozek K., Khrameeva E. E., Reznick J., Omerbašić D., Bennett N. C., Lewin G. R., et al. (2017). Lipidome determinants of maximal lifespan in mammals. Sci. Rep. 7:5. 10.1038/s41598-017-00037-7 PubMed DOI PMC

Bryant D. M., Newton A. V. (1994). Metabolic costs of dominance in dippers, Cinclus cinclus. Anim. Behav. 48 447–455. 10.1006/anbe.1994.1258 DOI

Bürkner P.-C. (2017). brms: an R package for Bayesian multilevel models using Stan. J. Stat. Soft. 80 1–28. 10.18637/jss.v080.i01 DOI

Bürkner P.-C. (2018). Advanced Bayesian multilevel modeling with the R package brms. R. J. 10:395. 10.32614/RJ-2018-017 DOI

Calhoon E. A., Jimenez A. G., Harper J. M., Jurkowitz M. S., Williams J. B. (2014). Linkages between mitochondrial lipids and life history in temperate and tropical birds. Physiol. Biochem. Zool. 87 265–275. 10.1086/674696 PubMed DOI

Calhoon E. A., Ro J., Williams J. B. (2015). Perspectives on the membrane fatty acid unsaturation/pacemaker hypotheses of metabolism and aging. Chem. Phys. Lipids 191 48–60. 10.1016/j.chemphyslip.2015.08.008 PubMed DOI

da Costa J. P., Vitorino R., Silva G. M., Vogel C., Duarte A. C., Rocha-Santos T. (2016). A synopsis on aging—Theories, mechanisms and future prospects. Age. Res. Rev. 29 90–112. 10.1016/j.arr.2016.06.005 PubMed DOI PMC

de Magalhães J. P., Costa J. (2009). A database of vertebrate longevity records and their relation to other life-history traits. J. Evol. Biol. 22 1770–1774. 10.1111/j.1420-9101.2009.01783.x PubMed DOI

de Magalhães J. P., Costa J., Church G. M. (2007). An analysis of the relationship between metabolism, developmental schedules, and longevity using phylogenetic independent contrasts. J. Gerontol. A Biol. Sci. Med. 62 149–160. 10.1093/gerona/62.2.149 PubMed DOI PMC

Douma J. C., Weedon J. T. (2019). Analysing continuous proportions in ecology and evolution: a practical introduction to beta and Dirichlet regression. Methods Ecol. Evol. 10 1412–1430. 10.1111/2041-210X.13234 DOI

Drent R. H., Daan S. (1980). The prudent parent: energetic adjustments in avian breeding. Ardea 38–90 225–252. 10.5253/arde.v68.p225 DOI

Farmer E. E., Mueller M. J. (2013). ROS-mediated lipid peroxidation and RES-activated signaling. Annu. Rev. Plant Physiol. 64 429–450. 10.1146/annurev-arplant-050312-120132 PubMed DOI

Fransson T., Jansson L., Kolehmainen T., Kroon C., Wenninger T. (2017). EURING List of Longevity Records for European Birds. Available online at: https://euring.org/data-and-codes/longevity-list (accessed November 24, 2018).

Furness L. J., Speakman J. R. (2008). Energetics and longevity in birds. Age 30 75–87. 10.1007/s11357-008-9054-3 PubMed DOI PMC

Gaillard J.-M., Lemaître J.-F., Berger V., Bonenfant C., Devillard S., Douhard M., et al. (2016). “Life histories, axes of variation in,” in Encyclopedia of Evolutionary Biology, Vol. 2 ed. Kliman R. M. (Amsterdam: Elsevier; ), 312–323. 10.1016/B978-0-12-800049-6.00085-8 DOI

Galván I., Naudí A., Erritzře J., Møller A. P., Barja G., Pamplona R. (2015). Long lifespans have evolved with long and monounsaturated fatty acids in birds. Evolution 69 2776–2784. 10.1111/evo.12754 PubMed DOI

Garamszegi L. Z. (2014). “Uncertainties due to within-species variation in comparative studies: measurement errors and statistical weights,” in Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology, ed. L. Z. Garamszegi (Heidelberg: Springer), 157–199.

Gavrilov V. M. (2014). Ecological and scaling analysis of the energy expenditure of rest, activity, flight, and evaporative water loss in passeriformes and non-passeriformes in relation to seasonal migrations and to the occupation of boreal stations in high and moderate latitudes. Q. Rev. Biol. 89 107–150. 10.1086/676046 PubMed DOI

Gelman A., Hill J., Yajima M. (2012). Why we (usually) don’t have to worry about multiple comparisons. J. Res. Educ. Effect. 5 189–211. 10.1080/19345747.2011.618213 DOI

Gelman A., Rubin D. B. (1992). Inference from iterative simulation using multiple sequences. Statist. Sci. 7 457–472. 10.1214/ss/1177011136 DOI

Gonzalez A., Pagé B., Weber J.-M. (2015). Membranes as a possible pacemaker of metabolism in cypriniform fish: does phylogeny matter? J. Exp. Biol. 218 2563–2572. 10.1242/jeb.117630 PubMed DOI

Grande F., Prigge W. F. (1970). Glucagon infusion, plasma FFA and triglycerides, blood sugar, and liver lipids in birds. Am. J. Physiol. 218 1406–1411. 10.1152/ajplegacy.1970.218.5.1406 PubMed DOI

Grecco H. E., Schmick M., Bastiaens P. I. H. (2011). Signaling from the living plasma membrane. Cell 144 897–909. 10.1016/j.cell.2011.01.029 PubMed DOI

Guglielmo C. G. (2010). Move that fatty acid: fuel selection and transport in migratory birds and bats. Integr. Comp. Biol. 50 336–345. 10.1093/icb/icq097 PubMed DOI

Hackett S. J., Kimball R. T., Reddy S., Bowie R. C. K., Braun E. L., Braun M. J., et al. (2008). A phylogenomic study of birds reveals their evolutionary history. Science 320 1763–1768. 10.1126/science.1157704 PubMed DOI

Hespanhol L., Vallio C. S., Costa L. M., Saragiotto B. T. (2019). Understanding and interpreting confidence and credible intervals around effect estimates. Braz. J. Phys. Ther. 23 290–301. 10.1016/j.bjpt.2018.12.006 PubMed DOI PMC

Holman R. T. (1954). Autoxidation of fats and related substances. Prog. Chem. Fats Other Lipids 2 51–98. 10.1016/0079-6832(54)90004-X DOI

Hulbert A. (2003). Life, death and membrane bilayers. J. Exp. Biol. 206 2303–2311. 10.1242/jeb.00399 PubMed DOI

Hulbert A. J. (2005). On the importance of fatty acid composition of membranes for aging. J. Theor. Biol. 234 277–288. 10.1016/j.jtbi.2004.11.024 PubMed DOI

Hulbert A. J. (2008). The links between membrane composition, metabolic rate and lifespan. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 150 196–203. 10.1016/j.cbpa.2006.05.014 PubMed DOI

Hulbert A. J. (2010). Metabolism and longevity: is there a role for membrane fatty acids? Integr. Comp. Biol. 50 808–817. 10.1093/icb/icq007 PubMed DOI

Hulbert A. J., Else P. L. (1999). Membranes as possible pacemakers of metabolism. J. Theor. Biol. 199 257–274. 10.1006/jtbi.1999.0955 PubMed DOI

Jaureguiberry M. S., Tricerri M. A., Sanchez S. A., Finarelli G. S., Montanaro M. A., Prieto E. D., et al. (2014). Role of plasma membrane lipid composition on cellular homeostasis: learning from cell line models expressing fatty acid desaturases. Acta Biochim. Biophys. Sin. 46 273–282. 10.1093/abbs/gmt155 PubMed DOI PMC

Jenni L., Jenni-Eiermann S. (1998). Fuel supply and metabolic constraints in migrating birds. J. Avian Biol. 29 521–528. 10.2307/3677171 DOI

Jetz W., Thomas G. H., Joy J. B., Hartmann K., Mooers A. O. (2012). The global diversity of birds in space and time. Nature 491 444–448. 10.1038/nature11631 PubMed DOI

Jimenez A. G., Cooper-Mullin C., Calhoon E. A., Williams J. B. (2014). Physiological underpinnings associated with differences in pace of life and metabolic rate in north temperate and neotropical birds. J. Comp. Physiol. B 184 545–561. 10.1007/s00360-014-0825-0 PubMed DOI

Jimenez A. G., Winward J. D., Walsh K. E., Champagne A. M. (2020). Effects of membrane fatty acid composition on cellular metabolism and oxidative stress in dermal fibroblasts from small and large breed dogs. J. Exp. Biol. 223:jeb221804. 10.1242/jeb.221804 PubMed DOI

Johnson A. A., Stolzing A. (2019). The role of lipid metabolism in aging, lifespan regulation, and age-related disease. Aging Cell 18:e13048. 10.1111/acel.13048 PubMed DOI PMC

Jové M., Mota-Martorell N., Pradas I., Galo-Licona J. D., Martín-Gari M., Obis È. (2020). The lipidome fingerprint of longevity. Molecules 25:4343. 10.3390/molecules25184343 PubMed DOI PMC

Jové M., Naudí A., Aledo J. C., Cabré R., Ayala V., Portero-Otin M., et al. (2013). Plasma long-chain free fatty acids predict mammalian longevity. Sci. Rep. 3:sre03346. 10.1038/srep03346 PubMed DOI PMC

Lapointe J., Hekimi S. (2010). When a theory of aging ages badly. Cell. Mol. Life Sci. 67 1–8. 10.1007/s00018-009-0138-8 PubMed DOI PMC

Lingwood D., Harauz G., Ballantyne J. S. (2005). Regulation of fish gill Na(+)-K(+)-ATPase by selective sulfatide-enriched raft partitioning during seawater adaptation. J. Biol. Chem. 280 36545–36550. 10.1074/jbc.M506670200 PubMed DOI

McKechnie A. E., Wolf B. O. (2004). The allometry of avian basal metabolic rate: good predictions need good data. Physiol. Biochem. Zool. 77 502–521. 10.1086/383511 PubMed DOI

McNab B. K. (2009). Ecological factors affect the level and scaling of avian BMR. Comp. Biochem. Physiol. A 152 22–45. 10.1016/j.cbpa.2008.08.021 PubMed DOI

Mène-Saffrané L., Dubugnon L., Chételat A., Stolz S., Gouhier-Darimont C., Farmer E. E. (2009). Nonenzymatic oxidation of trienoic fatty acids contributes to reactive oxygen species management in Arabidopsis. J. Biol. Chem. 284 1702–1708. 10.1074/jbc.M807114200 PubMed DOI

Møller A. P. (2008). Relative longevity and field metabolic rate in birds. J. Evol. Biol. 21 1379–1386. 10.1111/j.1420-9101.2008.01556.x PubMed DOI

Mönkkönen M. (1992). Life history traits of Palaearctic and Nearctic migrant passerines. Ornis Fennica 69 161–172.

Munro D., Pamenter M. E. (2019). Comparative studies of mitochondrial reactive oxygen species in animal longevity: technical pitfalls and possibilities. Aging Cell 18:e13009. 10.1111/acel.13009 PubMed DOI PMC

Naudí A., Jové M., Ayala V., Portero-Otín M., Barja G., Pamplona R. (2013). Membrane lipid unsaturation as physiological adaptation to animal longevity. Front. Physiol. 4:372. 10.3389/fphys.2013.00372 PubMed DOI PMC

Pamplona R., Barja G. (2011). An evolutionary comparative scan for longevity-related oxidative stress resistance mechanisms in homeotherms. Biogerontology 12:409. 10.1007/s10522-011-9348-1 PubMed DOI

Pamplona R., Barja G., Portero-Otín M. (2002). Membrane fatty acid unsaturation, protection against oxidative stress, and maximum life span: a homeoviscous-longevity adaptation? Ann. N. Y. Acad. Sci. 959 475–490. 10.1111/j.1749-6632.2002.tb02118.x PubMed DOI

Pamplona R., Portero-Otín M., Riba D., Ruiz C., Prat J., Bellmunt M. J., et al. (1998). Mitochondrial membrane peroxidizability index is inversely related to maximum life span in mammals. J. Lipid Res. 39 1989–1994. PubMed

Papsdorf K., Brunet A. (2019). Linking lipid metabolism to chromatin regulation in aging. Trends Cell Biol. 29 97–116. 10.1016/j.tcb.2018.09.004 PubMed DOI PMC

Pearl R. (1928). The Rate of Living. London: University of London Press.

Perez-Campo R., Lopez-Torres M., Cadenas S., Rojas C., Barja G. (1998). The rate of free radical production as a determinant of the rate of aging: evidence from the comparative approach. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 168 149–158. PubMed

R Core Team (2020). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.

Richard D., Kefi K., Barbe U., Bausero P., Visioli F. (2008). Polyunsaturated fatty acids as antioxidants. Pharmacol. Res. 57 451–455. 10.1016/j.phrs.2008.05.002 PubMed DOI

Ricklefs R. E., Wikelski M. (2002). The physiology/life-history nexus. Trends. Ecol. Evol. 17 462–468. 10.1016/S0169-5347(02)02578-8 DOI

Schmid-Siegert E., Stepushenko O., Glauser G., Farmer E. E. (2016). Membranes as structural antioxidants. Recycling of malondialdehyde to its source in oxidation-sensitive chloroplast fatty acids. J. Biol. Chem. 291 13005–13013. 10.1074/jbc.M116.729921 PubMed DOI PMC

Schroeder E. A., Brunet A. (2015). Lipid profiles and signals for long life. Trends Endocrinol. Metab. 26 589–592. 10.1016/j.tem.2015.08.007 PubMed DOI PMC

Shaikh S. R., Kinnun J. J., Leng X., Williams J. A., Wassall S. R. (2015). How polyunsaturated fatty acids modify molecular organization in membranes: insight from NMR studies of model systems. Biochim. Biophys. Acta Biomembr. 1848 211–219. 10.1016/j.bbamem.2014.04.020 PubMed DOI

Sjölander A., Vansteelandt S. (2019). Frequentist versus Bayesian approaches to multiple testing. Eur. J. Epidemiol. 34 809–821. 10.1007/s10654-019-00517-2 PubMed DOI PMC

Sollberger S., Ehlert U. (2016). How to use and interpret hormone ratios. Psychoneuroendocrinology 63 385–397. 10.1016/j.psyneuen.2015.09.031 PubMed DOI

Soriano-Redondo A., Gutiérrez J. S., Hodgson D., Bearhop S. (2020). Migrant birds and mammals live faster than residents. Nat. Commun. 11:5719. 10.1038/s41467-020-19256-0 PubMed DOI PMC

Speakman J. R. (2005a). Body size, energy metabolism and lifespan. J. Exp. Biol. 208 1717–1730. 10.1242/jeb.01556 PubMed DOI

Speakman J. R. (2005b). Correlations between physiology and lifespan - two widely ignored problems with comparative studies. Aging Cell 4 167–175. 10.1111/j.1474-9726.2005.00162.x PubMed DOI

Speakman J. R., Selman C. (2011). The free-radical damage theory: accumulating evidence against a simple link of oxidative stress to ageing and lifespan. Bioessays 33 255–259. 10.1002/bies.201000132 PubMed DOI

Stearns S. (1989). Trade-offs in life-history evolution. Funct. Ecol. 3 259–268.

Stearns S. C. (1992). The Evolution of Life Histories. Oxford: Oxford University Press.

Storchová L., Hořák D. (2018). Life-history characteristics of European birds. Glob. Ecol. Biogeogr. 27 400–406. 10.1111/geb.12709 DOI

Tomasek O., Bobek L., Kralova T., Adamkova M., Albrecht T. (2019). Fuel for the pace of life: baseline blood glucose concentration co-evolves with life-history traits in songbirds. Funct. Ecol. 33 239–249. 10.1111/1365-2435.13238 DOI

Turner N., Else P. L., Hulbert A. J. (2003). Docosahexaenoic acid (DHA) content of membranes determines molecular activity of the sodium pump: implications for disease states and metabolism. Naturwissenschaften 90 521–523. 10.1007/s00114-003-0470-z PubMed DOI

Valencak T. G., Azzu V. (2014). Making heads or tails of mitochondrial membranes in longevity and aging: a role for comparative studies. Longev. Healthspan 3:3. 10.1186/2046-2395-3-3 PubMed DOI PMC

Valencak T. G., Ruf T. (2007). N-3 polyunsaturated fatty acids impair lifespan but have no role for metabolism. Aging Cell 6 15–25. 10.1111/j.1474-9726.2006.00257.x PubMed DOI

Visioli F., Colombo C., Galli C. (1998). Oxidation of individual fatty acids yields different profiles of oxidation markers. Biochem. Biophys. Res. Commun. 245 487–489. 10.1006/bbrc.1998.8463 PubMed DOI

Weijers R. N. M. (2016). Membrane flexibility, free fatty acids, and the onset of vascular and neurological lesions in type 2 diabetes. J. Diabetes Metab. Disord. 15:13. 10.1186/s40200-016-0235-9 PubMed DOI PMC

Welker P., Geist B., Frühauf J.-H., Salanova M., Groneberg D. A., Krause E., et al. (2007). Role of lipid rafts in membrane delivery of renal epithelial Na+-K+-ATPase, thick ascending limb. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292 R1328–R1337. 10.1152/ajpregu.00166.2006 PubMed DOI

Williams J. B., Miller R. A., Harper J. M., Wiersma P. (2010). Functional linkages for the pace of life, life-history, and environment in birds. Integr. Comp. Biol. 50 855–868. 10.1093/icb/icq024 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...