Low loss and high performance interconnection between standard single-mode fiber and antiresonant hollow-core fiber
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SGS20/166/OHK3/3T/13
České Vysoké Učení Technické v Praze
EP/P030181/1
Engineering and Physical Sciences Research Council
682724
European Research Council - International
PubMed
33888786
PubMed Central
PMC8062498
DOI
10.1038/s41598-021-88065-2
PII: 10.1038/s41598-021-88065-2
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We demonstrate halving the record-low loss of interconnection between a nested antiresonant nodeless type hollow-core fiber (NANF) and standard single-mode fiber (SMF). The achieved interconnection loss of 0.15 dB is only 0.07 dB above the theoretically-expected minimum loss. We also optimized the interconnection in terms of unwanted cross-coupling into the higher-order modes of the NANF. We achieved cross-coupling as low as -35 dB into the LP[Formula: see text] mode (the lowest-loss higher-order mode and thus the most important to eliminate). With the help of simulations, we show that the measured LP[Formula: see text] mode coupling is most likely limited by the slightly imperfect symmetry of the manufactured NANF. The coupling cross-talk into the highly-lossy LP[Formula: see text] mode ([Formula: see text] dB/km in our fiber) was measured to be below -22 dB. Furthermore, we show experimentally that the anti-reflective coating applied to the interconnect interface reduces the insertion loss by 0.15 dB while simultaneously reducing the back-reflection below -40 dB over a 60 nm bandwidth. Finally, we also demonstrated an alternative mode-field adapter to adapt the mode-field size between SMF and NANF, based on thermally-expanded core fibers. This approach enabled us to achieve an interconnection loss of 0.21 dB and cross-coupling of -35 dB into the LP[Formula: see text] mode.
Zobrazit více v PubMed
Bradley, T. D. et al. Record low-loss 1.3 dB/km data transmitting antiresonant hollow core fibre. In 44th European Conference on Optical Communication (ECOC 2018), 1–3. 10.1109/ECOC.2018.8535324 (2018).
Jasion, G. T. et al. Hollow core NANF with 0.28 dB/km attenuation in the C and L bands. In Optical Fiber Communication Conference Postdeadline Papers 2020, Th4B.4. 10.1364/OFC.2020.Th4B.4 (Optical Society of America, 2020).
Bradley, T. et al. Antiresonant hollow core fibre with 0.65 dB/km attenuation across the C and L telecommunication bands. In 45th European Conference on Optical Communication (ECOC 2019) (2019).
Kuschnerov M, et al. Transmission of commercial low latency interfaces over hollow-core fiber. J. Lightw. Technol. 2016;34:314–320. doi: 10.1109/JLT.2015.2469144. DOI
Mutugala U, et al. Hollow-core fibres for temperature-insensitive fibre optics and its demonstration in an optoelectronic oscillator. Sci. Rep. 2018 doi: 10.1038/s41598-018-36064-1. PubMed DOI PMC
Roberts P, et al. Achieving low loss and low nonlinearity in hollow core photonic crystal fibers. Lasers Electro-Opt. 2005;2:1240–1242.
Liu Z, et al. Nonlinearity-free coherent transmission in hollow-core antiresonant fiber. J. Lightw. Technol. 2019;37:909–916. doi: 10.1109/JLT.2018.2883541. DOI
Shephard J, et al. Improved hollow-core photonic crystal fiber design for delivery of nanosecond pulses in laser micromachining applications. Appl. Opt. 2005;44:4582–4588. doi: 10.1364/AO.44.004582. PubMed DOI
Komanec M, et al. Low-loss and low-back-reflection hollow-core to standard fiber interconnection. IEEE Photon. Technol. Lett. 2019;31:723–726. doi: 10.1109/LPT.2019.2902635. DOI
Xiao G, Zhang Z, Grover C. Adhesives in the packaging of planar lightwave circuits. Int. J. Adhesion Adhesives. 2004 doi: 10.1016/j.ijadhadh.2003.11.003. DOI
Suslov, D. et al. Highly-efficient and low return-loss coupling of standard and antiresonant hollow-core fibers. In Frontiers in Optics + Laser Science APS/DLS, FW5B.2. 10.1364/FIO.2019.FW5B.2 (Optical Society of America, 2019).
Jung Y, et al. Compact micro-optic based components for hollow core fibers. Opt. Express. 2020;28:1518–1525. doi: 10.1364/OE.28.001518. PubMed DOI
Choi H, et al. Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer. Opt. Lett. 2008;33:2455–2457. doi: 10.1364/OL.33.002455. PubMed DOI
Xin M, et al. Attosecond precision multi-kilometer laser-microwave network. Light Sci. Appl. 2017 doi: 10.1038/lsa.2016.187. PubMed DOI PMC
Lisdat C, et al. A clock network for geodesy and fundamental science. Nat. Commun. 2016 doi: 10.1038/ncomms12443. PubMed DOI PMC
Sakr, H. et al. Ultrawide bandwidth hollow core fiber for interband short reach data transmission. In 2019 Optical Fiber Communications Conference and Exhibition (OFC), 1–3 (2019).
Nespola, A. et al. Record PM-16QAM and PM-QPSK transmission distance (125 and 340 km) over hollow-core-fiber. In 45th European Conference on Optical Communication (ECOC 2019), 285 (4). 10.1049/cp.2019.1019 (2019).
Fokoua EN, et al. Accurate modelling of fabricated hollow-core photonic bandgap fibers. Opt. Express. 2015;23:23117–23132. doi: 10.1364/OE.23.023117. PubMed DOI
Gray, D. R. et al. Complementary analysis of modal content and properties in a 19-cell hollow core photonic band gap fiber using time-of-flight and S
Chang MP, Buscher DF. Cleaving optical fibre lengths to high relative accuracy. Opt. Commun. 1998;157:282–290. doi: 10.1016/S0030-4018(98)00440-4. DOI