Early evolution of reproductive isolation: A case of weak inbreeder/strong outbreeder leads to an intraspecific hybridization barrier in Arabidopsis lyrata

. 2021 Jun ; 75 (6) : 1466-1476. [epub] 20210511

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33900634

Reproductive strategies play a major role in plant speciation. Notably, transitions from outcrossing to selfing may lead to relaxed sexual selection and parental conflict. Shifts in mating systems can affect maternal and paternal interests, and thus parent-specific influence on endosperm development, leading to reproductive isolation: if selfing and outcrossing species hybridize, the resulting seeds may not be viable due to endosperm failure. Nevertheless, it remains unclear how the switch in mating systems can impact reproductive isolation between recently diverged lineages, that is, during the process of speciation. We investigated this question using Arabidopsis lyrata, which recently transitioned to selfing (10,000 years ago) in certain North American populations, where European populations remain outcrossing. We performed reciprocal crosses between selfers and outcrossers, and measured seed viability and endosperm development. We show that parental genomes in the hybrid seed negatively interact, as predicted by parental conflict. This leads to extensive hybrid seed lethality associated with endosperm cellularization disturbance. Our results suggest that this is primarily driven by divergent evolution of the paternal genome between selfers and outcrossers. In addition, we observed other hybrid seed defects, suggesting that sex-specific interests are not the only processes contributing to postzygotic reproductive isolation.

Zobrazit více v PubMed

Al-Shehbaz, I. A., and S. L. O'Kane. 2002. Taxonomy and phylogeny of Arabidopsis (Brassicaceae). Arab. B 1:e0001.

Baroux, C., C. Spillane, and U. Grossniklaus. 2002. Evolutionary origins of the endosperm in flowering plants. Genome Biol 3:1-5.

Bolker, B. M. 2008. Ecological models and data in R. Princeton Univ. Press, Princeton, NJ.

Bolker, B. M., M. E. Brooks, C. J. Clark, S. W. Geange, J. R. Poulsen, M. H. H. Stevens, and J. S. S. White. 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24:127-135.

Brandvain, Y., and D. Haig. 2005. Divergent mating systems and parental conflict as a barrier to hybridization in flowering plants. Am. Nat. 166:330-338.

Braselton, J. P., M. J. Wilkinson, and S. A. Clulow. 1996. Feulgen staining of intact plant tissues for confocal microscopy. Biotech. Histochem. 71:84-87.

Brooks, M. E., K. Kristensen, K. J. van Benthem, A. Magnusson, C. W. Berg, A. Nielsen, H. J. Skaug, M. Mächler, and B. M. Bolker. 2017. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J 9:378-400.

Buckley, J., E. Kilbride, V. Cevik, J. G. Vicente, E. B. Holub, and B. K. Mable. 2016. R-gene variation across Arabidopsis lyrata subspecies: effects of population structure, selection and mating system. BMC Evol. Biol. 16:1-17.

Burley, N., and M. Willson. 1984. Mate choice in plants. Princeton Univ. Press, Princeton, NJ.

Chen, J., S. Glémin, and M. Lascoux. 2017. Genetic diversity and the efficacy of purifying selection across plant and animal species. Mol. Biol. Evol. 34:1417-1428.

Coughlan, J. M., M.on. Brown, and J. H. Willis. 2020. Patterns of hybrid seed inviability in the Mimulus guttatus sp. complex reveal a potential role of parental conflict in reproductive isolation. Curr. Biol 30:83-93.e5.

Cribari-Neto, F., and A. Zeileis. 2010. Beta regression in R. J. Stat. Softw. 34:1-24.

Ferrari, S. L. P., and F. Cribari-Neto. 2004. Beta regression for modelling rates and proportions. J. Appl. Stat 31:799-815.

Florez-Rueda, A. M., M. Paris, A. Schmidt, A. Widmer, U. Grossniklaus, and T. Städler. 2016. Genomic imprinting in the endosperm is systematically perturbed in abortive hybrid tomato seeds. Mol. Biol. Evol. 33:2935-2946.

Foxe, J. P., M. Stift, A. Tedder, A. Haudry, S. I. Wright, and B. K. Mable. 2010. Reconstructing origins of loss of self-incompatibility and selfing in North American Arabidopsis lyrata: a population genetic context. Evolution 64:3495-3510.

Garner, A. G., A. M. Kenney, L. Fishman, and A. L. Sweigart. 2016. Genetic loci with parent-of-origin effects cause hybrid seed lethality in crosses between Mimulus species. New Phytol. 211:319-331.

Guo, Y. L., J. S. Bechsgaard, T. Slotte, B. Neuffer, M. Lascoux, D. Weigel, and M. H. Schierup. 2009. Recent speciation of Capsella rubella from Capsella grandiflora, associated with loss of self-incompatibility and an extreme bottleneck. Proc. Natl. Acad. Sci. USA 106:5246-5251.

Haig, D., and M. Westoby. 1989. Parent-specific gene expression and the triploid endosperm. Am. Nat. 134:147-155.

Hämälä, T., T. M. Mattila, P. H. Leinonen, H. Kuittinen, and O. Savolainen. 2017. Role of seed germination in adaptation and reproductive isolation in Arabidopsis lyrata. Mol. Ecol. 26:3484-3496.

Hatorangan, M. R., B. Laenen, K. A. Steige, T. Slotte, and C. Köhler. 2016. Rapid evolution of genomic imprinting in two species of the Brassicaceae. Plant Cell 28:1815-1827.

Hehenberger, E., D. Kradolfer, and C. Köhler. 2012. Endosperm cellularization defines an important developmental transition for embryo development. Development 139:2031-2039.

Hoebe, P. N., M. Stift, A. Tedder, and B. K. Mable. 2009. Multiple losses of self-incompatibility in North-American Arabidopsis lyrata?: phylogeographic context and population genetic consequences. Mol. Ecol. 18:4924-4939.

Johnston, S. A., and R. E. Hanneman. 1980. Support of the endosperm balance number hypothesis utilizing some tuber-bearing Solanum species. Am. Potato J. 57:7-14.

Johnston, S. A., and R. E. Hanneman 1982. Manipulations of endosperm balance number overcome crossing barriers between diploid Solanum species. Science 217:446-448.

Koch, M., J. Bishop, and T. Mitchell-Olds. 1999. Molecular systematics and evolution of Arabidopsis and Arabis. Plant Biol. 1:529-537.

Lafon-Placette, C., I. M. Johannessen, K. S. Hornslien, M. F. Ali, K. N. Bjerkan, J. Bramsiepe, B. M. Glöckle, C. A. Rebernig, A. K. Brysting, P. E. Grini, et al. 2017. Endosperm-based hybridization barriers explain the pattern of gene flow between Arabidopsis lyrata and Arabidopsis arenosa in Central Europe. Proc. Natl. Acad. Sci. USA 114:E1027-E1035.

Lafon-Placette, C., M. R. Hatorangan, K. A. Steige, A. Cornille, M. Lascoux, T. Slotte, and C. Köhler. 2018. Paternally expressed imprinted genes associate with hybridization barriers in Capsella. Nat. Plants 4:352-357.

Lafon Placette, C. 2020. Endosperm genome dosage, hybrid seed failure, and parental imprinting: sexual selection as an alternative to parental conflict. Am. J. Bot. 107:17-19.

Lafon-Placette, C., and C. Köhler. 2016. Endosperm-based postzygotic hybridization barriers: developmental mechanisms and evolutionary drivers. Mol. Ecol. 25:2620-2629.

Lenth, R. 2019. emmeans: estimated marginal means, aka least-squares means. R package version 1.3.4.

Lenth, R. V. 2016. Least-squares means: the R package lsmeans. J. Stat. Softw 69. 10.18637/jss.v069.i01

Mable, B. K., A. V. Robertson, S. Dart, C. D. I. Berardo, and L. Witham. 2005. Breakdown of self-incompatibility in the perennial Arabidopsis lyrata (Brassicaceae) and its genetic consequences. Evolution 59:1437-1448.

McCullagh, P., and J. A. Nelder. 1989. Generalized linear models, 2nd ed. CRC Press, Boca Raton, FL.

Metz, J., P. Liancourt, J. Kigel, D. Harel, M. Sternberg, and K. Tielbörger. 2010. Plant survival in relation to seed size along environmental gradients: a long-term study from semi-arid and Mediterranean annual plant communities. J. Ecol. 98:697-704.

Nasrallah, M. E., K. Yogeeswaran, S. Snyder, and J. B. Nasrallah. 2000. Arabidopsis species hybrids in the study of species differences and evolution of amphiploidy in plants. Plant Physiol. 124:1605-1614.

Parker, G. A., and L. Partridge. 1998. Sexual conflict and speciation. Phil.Trans. R. Soc. Lond. B 353:261-274.

Pinheiro, J., and D. Bates. 2000. Mixed-effects models in S and S-PLUS. Springer Science & Business Media, New York.

Queller, D. C. 1984. Models of kin selection on seed provisioning. Heredity (Edinb) 53:151-165.

R Development Core Team .. 2019. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Raunsgard, A., Ø. H. Opedal, R. K. Ekrem, J. Wright, G. H. Bolstad, W. S. Armbruster, and C. Pélabon. 2018. Intersexual conflict over seed size is stronger in more outcrossed populations of a mixed-mating plant. Proc. Natl. Acad. Sci. USA 115:11561-11566.

Rebernig, C. A., C. Lafon-Placette, M. R. Hatorangan, T. Slotte, and C. Köhler. 2015. Non-reciprocal interspecies hybridization barriers in the Capsella genus are established in the endosperm. PLoS Genet. 11:1-19.

Westoby, M., and B. Rice . 1982. Evolution of the seed plants and inclusive fitness of plant tissues. Evolution 36:713-724.

Ross-Ibarra, J., S. I. Wright, J. P. Foxe, A. Kawabe, L. DeRose-Wilson, G. Gos, D. Charlesworth, and B. S. Gaut. 2008. Patterns of polymorphism and demographic history in natural populations of Arabidopsis lyrata. PLoS One 3. https://doi.org/10.1371/journal.pone.0002411

Roth, M., A. M. Florez-Rueda, S. Griesser, M. Paris, and T. Städler. 2018. Incidence and developmental timing of endosperm failure in post-zygotic isolation between wild tomato lineages. Ann. Bot. 121:107-118.

Schierup, M. H. 1998. The effect of enzyme heterozygosity on growth in a strictly outcrossing species, the self-incompatible Arabis petraea (Brassicaceae). Hereditas 128:21-31.

Schmickl, R., M. H. Jørgensen, A. K. Brysting, and M. A. Koch. 2010. The evolutionary history of the Arabidopsis lyrata complex: a hybrid in the amphi-Beringian area closes a large distribution gap and builds up a genetic barrier. BMC Evol. Biol. 10:1-18.

Smith, C. C., and S. D. Fretwell. 1974. The optimal balance between size and number of offspring. Am. Nat. 108:499-506.

Trivers, R. L. 1974. Parent-offspring conflict. Amer. Zool. 264:249-264.

Tuteja, R., P. C. McKeown, P. Ryan, C. C. Morgan, M. T. A. Donoghue, T. Downing, M. J. O'Connell, and C. Spillane. 2019. Paternally expressed imprinted genes under positive Darwinian selection in Arabidopsis thaliana. Mol. Biol. Evol. 36:1239-1253.

Wickham, H. 2016. ggplot2: elegant graphics for data analysis. Springer-Verlag, New York.

Willi, Y. 2013. The battle of the sexes over seed size: support for both kinship genomic imprinting and interlocus contest evolution. Am. Nat. 181:787-798.

Willi, Y., M. Fracassetti, S. Zoller, and J. Van Buskirk. 2018. Accumulation of mutational load at the edges of a species range. Mol. Biol. Evol. 35:781-791.

Wolff, P., H. Jiang, G. Wang, J. Santos-González, and C. Köhler. 2015. Paternally expressed imprinted genes establish postzygotic hybridization barriers in Arabidopsis thaliana. Elife 4:1-14.

Wright, S. I., S. Kalisz, and T. Slotte. 2013. Evolutionary consequences of self-fertilization in plants. Proc. R. Soc. B Biol. Sci. 280.

Zeileis, A., and T. Hothorn. 2002. Diagnostic checking in regression relationships. R News 2:7-10.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...