Death Receptor 5 (TNFRSF10B) Is Upregulated and TRAIL Resistance Is Reversed in Hypoxia and Normoxia in Colorectal Cancer Cell Lines after Treatment with Skyrin, the Active Metabolite of Hypericum spp

. 2021 Apr 01 ; 13 (7) : . [epub] 20210401

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33916015

Grantová podpora
APVV-18-0125 Agentúra na Podporu Výskumu a Vývoja
VEGA 1/0022/19 Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky
ITMS 26220220185 Operational Programme Research and Development Programme, funded by the ERDF
ITMS2014+: 313011D103 Operational Programme Research and Development Programme, funded by the ERDF
LQ1601 MEYS CR
LM2018127 MEYS CR
LM2015043 MEYS CR
LM2018140 MEYS CR

Skyrin (SKR) is a plant bisanthraquinone secondary metabolite from the Hypericum genus with potential use in anticancer therapy. However, its effect and mechanism of action are still unknown. The negative effect of SKR on HCT 116 and HT-29 cancer cell lines in hypoxic and normoxic conditions was observed. HCT 116 cells were more responsive to SKR treatment as demonstrated by decreased metabolic activity, cellularity and accumulation of cells in the G1 phase. Moreover, an increasing number of apoptotic cells was observed after treatment with SKR. Based on the LC-MS comparative proteomic data from hypoxia and normoxia (data are available via ProteomeXchange with the identifier PXD019995), SKR significantly upregulated Death receptor 5 (DR5), which was confirmed by real-time qualitative PCR (RT-qPCR). Furthermore, multiple changes in the Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-activated cascade were observed. Moreover, the reversion of TRAIL resistance was observed in HCT 116, HT-29 and SW620 cell lines, even in hypoxia, which was linked to the upregulation of DR5. In conclusion, our results propose the use of SKR as a prospective anticancer drug, particularly as an adjuvant to TRAIL-targeting treatment to reverse TRAIL resistance in hypoxia.

Zobrazit více v PubMed

Jahn L., Schafhauser T., Wibberg D., Rückert C., Winkler A., Kulik A., Weber T., Flor L., van Pée K.H., Kalinowski J., et al. Linking secondary metabolites to biosynthesis genes in the fungal endophyte Cyanodermella asteris: The anti-cancer bisanthraquinone skyrin. J. Biotechnol. 2017;257:233–239. doi: 10.1016/j.jbiotec.2017.06.410. PubMed DOI

Kimáková K., Kimáková A., Idkowiak J., Stobiecki M., Rodziewicz P., Marczak Ł., Čellárová E. Phenotyping the genus Hypericum by secondary metabolite profiling: Emodin vs. skyrin, two possible key intermediates in hypericin biosynthesis. Anal. Bioanal. Chem. 2018;410:7689–7699. doi: 10.1007/s00216-018-1384-0. PubMed DOI PMC

Rizzo P., Altschmied L., Stark P., Rutten T., Gündel A., Scharfenberg S., Franke K., Bäumlein H., Wessjohann L., Koch M., et al. Discovery of key regulators of dark gland development and hypericin biosynthesis in St. John’s Wort (Hypericum perforatum) Plant Biotechnol. J. 2019;17:2299–2312. doi: 10.1111/pbi.13141. PubMed DOI PMC

Howard B.H., Raistrick H. Studies in the biochemistry of micro-organisms. 91. The colouring matters of Penicillium islandicum Sopp. Part 3. Skyrin and flavoskyrin. Biochem. J. 1954;56:56–65. doi: 10.1042/bj0560056. PubMed DOI PMC

Shibata S., Shoji J., Ohta A., Watanabe M. Metabolic products of fungi. XI. Some observation on the occurrence of skyrin and rugulosin in mold metabolites, with a reference to structural relationship between penicilliopsin and skyrin. Pharm. Bull. 1957;5:380–382. doi: 10.1248/cpb1953.5.380. PubMed DOI

Yanagi Y., Nakata M., Suzuki N. Selective Inhibition of Viral RNA Transcription by Skyrin. J. Pestic. Sci. 1976;1:107–114. doi: 10.1584/jpestics.1.107. DOI

Kiyoshi K., Taketoshi K., Hideki M., Jiro K., Yoshinori N. A comparative study on cytotoxicities and biochemical properties of anthraquinone mycotoxins emodin and skyrin from Penicillium islandicum sopp. Toxicol. Lett. 1984;20:155–160. doi: 10.1016/0378-4274(84)90141-3. PubMed DOI

Ueno Y., Umemori K., Niimi E.C.C., Tanuma S.I.I., Nagata S., Sugamata M., Ihara T., Sekijima M., Kawai K.I.I., Ueno I., et al. Induction of apoptosis by T-2 toxin and other natural toxins in HL-60 human promyelotic leukemia cells. Nat. Toxins. 1995;3:129–137. doi: 10.1002/nt.2620030303. PubMed DOI

Brady S.F., Singh M.P., Janso J.E., Clardy J. Cytoskyrins A and B, new BIA active bisanthraquinones isolated from an endophytic fungus. Org. Lett. 2000;2:4047–4049. doi: 10.1021/ol006681k. PubMed DOI

Parker J.C., McPherson R.K., Andrews K.M., Levy C.B., Dubins J.S., Chin J.E., Perry P.V., Hulin B., Perry D.A., Inagaki T., et al. Effects of skyrin, a receptor-selective glucagon antagonist, in rat and human hepatocytes. Diabetes. 2000;49:2079–2086. doi: 10.2337/diabetes.49.12.2079. PubMed DOI

Lin L.C., Chou C.J., Kuo Y.C. Cytotoxic principles from Ventilago leiocarpa. J. Nat. Prod. 2001;64:674–676. doi: 10.1021/np000569d. PubMed DOI

Watts P., Kittakoop P., Veeranondha S., Wanasith S., Thongwichian R., Saisaha P., Intamas S., Hywel-Jones N.L. Cytotoxicity against insect cells of entomopathogenic fungi of the genera Hypocrella (anamorph Aschersonia): Possible agents for biological control. Mycol. Res. 2003;107:581–586. doi: 10.1017/S0953756203007846. PubMed DOI

Nicolaou K.C., Papageorgiou C.D., Piper J.L., Chadha R.K. The cytoskyrin cascade: A facile entry into cytoskyrin A, deoxyrubroskyrin, rugulin, skyrin, and flavoskyrin model systems. Angew. Chemie Int. Ed. 2005;44:5846–5851. doi: 10.1002/anie.200502011. PubMed DOI

Vargas F., Rivas C., Zoltan T., Lopez V., Ortega J., Izzo C., Pineda M., Medina J., Medina E., Rosales L. Antioxydant and scavenging activity of skyrin on free radical and some reactive oxygen species. Av. Quim. 2008;3:7–14.

Bräse S., Gläser F., Kramer C., Lindner S., Linsenmeier A.M., Masters K.S., Meister A.C., Ruff B.M., Zhong S. The Chemistry of Mycotoxins; Progress in the Chemistry of Organic Natural Products. Volume 97. Springer; Vienna, Austria: 2013. pp. 139–151. PubMed DOI

Koul M., Meena S., Kumar A., Sharma P.R., Singamaneni V., Riyaz-Ul-Hassan S., Hamid A., Chaubey A., Prabhakar A., Gupta P., et al. Secondary Metabolites from Endophytic Fungus Penicillium pinophilum Induce ROS-Mediated Apoptosis through Mitochondrial Pathway in Pancreatic Cancer Cells. Planta Med. 2016;82:344–355. doi: 10.1055/s-0035-1558308. PubMed DOI

Revuru B., Bálintová M., Henzelyová J., Čellárová E., Kusari S. MALDI-HRMS Imaging Maps the Localization of Skyrin, the Precursor of Hypericin, and Pathway Intermediates in Leaves of Hypericum Species. Molecules. 2020;25 doi: 10.3390/molecules25173964. PubMed DOI PMC

Hatfield G., Slagle D. Isolation of Skyrin from Hypomyces lactifluorum. Lloydia. 1973;36:354–356. PubMed

Bara R.A. Ph.D. Thesis. Heinrich-Heine Universität Düsseldorf; Düsseldorf, Germany: 2012. Natural Products from Endophytic Fungus Talaromyces Wortmannii: Their Structure Elucidation and Mechanism of Actions.

Bara R., Aly A.H., Pretsch A., Wray V., Wang B., Proksch P., Debbab A. Antibiotically active metabolites from Talaromyces wortmannii, an endophyte of Aloe vera. J. Antibiot. 2013;66:491–493. doi: 10.1038/ja.2013.28. PubMed DOI

Wang C., Jin Q., Yang S., Zhang D., Wang Q., Li J., Song S., Sun Z., Ni Y., Zhang J., et al. Synthesis and Evaluation of 131I-Skyrin as a Necrosis Avid Agent for Potential Targeted Radionuclide Therapy of Solid Tumors. Mol. Pharm. 2016;13:180–189. doi: 10.1021/acs.molpharmaceut.5b00630. PubMed DOI

Zaman A. Docking studies and network analyses reveal capacity of compounds from Kandelia rheedii to strengthen cellular immunity by interacting with host proteins during tuberculosis infection. Bioinformation. 2012;8:1012–1020. doi: 10.6026/97320630081012. PubMed DOI PMC

Jendželovská Z., Jendželovský R., Hilovská L., Koval J., Mikeš J., Fedoročko P. Single pre-treatment with hypericin, a St. John’s wort secondary metabolite, attenuates cisplatin- and mitoxantrone-induced cell death in A2780, A2780cis and HL-60 cells. Toxicol. Vitr. 2014;28:1259–1273. doi: 10.1016/j.tiv.2014.06.011. PubMed DOI

Jendzelovská Z., Jendželovský R., Kuchárová B., Fedoročko P. Hypericin in the Light and in the Dark: Two Sides of the Same Coin. Front. Plant Sci. 2016;7:1–20. doi: 10.3389/fpls.2016.00560. PubMed DOI PMC

Hockel M., Vaupel P. Tumor Hypoxia: Definitions and Current Clinical, Biologic, and Molecular Aspects. JNCI J. Natl. Cancer Inst. 2001;93:266–276. doi: 10.1093/jnci/93.4.266. PubMed DOI

Muz B., de la Puente P., Azab F., Azab A.K. The role of hypoxia in cancer progression angiogenesis metastasis and resistane to therapy. Hypoxia. 2015;3:83–92. doi: 10.2147/HP.S93413. PubMed DOI PMC

Dang C.V., Semenza G.L. Oncogenic alterations of metabolism. Trends Biochem. Sci. 1999;24:68–72. doi: 10.1016/S0968-0004(98)01344-9. PubMed DOI

Challapalli A., Carroll L., Aboagye E.O. Molecular mechanisms of hypoxia in cancer. Clin. Transl. Imaging. 2017;5:225–253. doi: 10.1007/s40336-017-0231-1. PubMed DOI PMC

Wang G.L., Jiang B.H., Rue E.A., Semenza G.L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA. 1995;92:5510–5514. doi: 10.1073/pnas.92.12.5510. PubMed DOI PMC

Wang G.L., Semenza G.L. Purification and Characterization of Hypoxia-inducible Factor 1. J. Biol. Chem. 1995;270:1230–1237. doi: 10.1074/jbc.270.3.1230. PubMed DOI

Semenza G.L. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer. 2003;3:721–732. doi: 10.1038/nrc1187. PubMed DOI

Rademakers S.E., Span P.N., Kaanders J.H.A.M., Sweep F.C.G.J., van der Kogel A.J., Bussink J. Molecular aspects of tumour hypoxia. Mol. Oncol. 2008;2:41–53. doi: 10.1016/j.molonc.2008.03.006. PubMed DOI PMC

Vaupel P. The Role of Hypoxia-Induced Factors in Tumor Progression. Oncologist. 2004;9:10–17. doi: 10.1634/theoncologist.9-90005-10. PubMed DOI

Abraham J., Salama N.N., Azab A.K. The role of P-glycoprotein in drug resistance in multiple myeloma Leuk. Lymphoma. 2015;56:26–33. doi: 10.3109/10428194.2014.907890. PubMed DOI

Das B., Tsuchida R., Malkin D., Koren G., Baruchel S., Yeger H. Hypoxia Enhances Tumor Stemness by Increasing the Invasive and Tumorigenic Side Population Fraction. Stem Cells. 2008;26:1818–1830. doi: 10.1634/stemcells.2007-0724. PubMed DOI

Duiker E.W., Mom C.H., de Jong S., Willemse P.H., Gietema J.A., van der Zee A.G., de Vries E.G. The clinical trail of TRAIL. Eur. J. Cancer. 2006;42:2233–2240. doi: 10.1016/j.ejca.2006.03.018. PubMed DOI

Stolfi C., Pallone F., Monteleone G. Molecular Targets of TRAIL-Sensitizing Agents in Colorectal Cancer. Int. J. Mol. Sci. 2012;13:7886–7901. doi: 10.3390/ijms13077886. PubMed DOI PMC

Szliszka E., Zydowicz G., Mizgala E., Krol W. Artepillin C (3,5-diprenyl-4-hydroxycinnamic acid) sensitizes LNCaP prostate cancer cells to TRAIL-induced apoptosis. Int. J. Oncol. 2012;41:818–828. doi: 10.3892/ijo.2012.1527. PubMed DOI PMC

Cormier Z. Small-molecule drug drives cancer cells to suicide. Nature. 2013 doi: 10.1038/nature.2013.12385. DOI

Mahajan S., Dammai V., Hsu T., Kraft A. Hypoxia-inducible factor-2α regulates the expression of TRAIL receptor DR5 in renal cancer cells. Carcinogenesis. 2008;29:1734–1741. doi: 10.1093/carcin/bgn132. PubMed DOI PMC

Kim M., Park S.Y., Pai H.S., Kim T.H., Billiar T.R., Seol D.W. Hypoxia inhibits tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by blocking Bax translocation. Cancer Res. 2004;64:4078–4081. doi: 10.1158/0008-5472.CAN-04-0284. PubMed DOI

Nagaraj N.S., Vigneswaran N., Zacharias W. Hypoxia inhibits TRAIL-induced tumor cell apoptosis: Involvement of lysosomal cathepsins. Apoptosis. 2007;12:125–139. doi: 10.1007/s10495-006-0490-1. PubMed DOI PMC

Guo L., Fan L., Ren J., Pang Z., Ren Y., Li J., Wen Z., Jiang X. A novel combination of TRAIL and doxorubicin enhances antitumor effect based on passive tumor-targeting of liposomes. Nanotechnology. 2011;22:265105. doi: 10.1088/0957-4484/22/26/265105. PubMed DOI

Jung K.A., Choi B.H., Kwak M.K. The c-MET/PI3K signaling is associated with cancer resistance to doxorubicin and photodynamic therapy by elevating BCRP/ABCG2 expression. Mol. Pharmacol. 2015;87:465–476. doi: 10.1124/mol.114.096065. PubMed DOI

Subramaniam A., Loo S.Y., Rajendran P., Manu K.A., Perumal E., Li F., Shanmugam M.K., Siveen K.S., Park J.I., Ahn K.S., et al. An anthraquinone derivative, emodin sensitizes hepatocellular carcinoma cells to TRAIL induced apoptosis through the induction of death receptors and downregulation of cell survival proteins. Apoptosis. 2013;18:1175–1187. doi: 10.1007/s10495-013-0851-5. PubMed DOI

Todo M., Horinaka M., Tomosugi M., Tanaka R., Ikawa H., Sowa Y., Ishikawa H., Fujiwara H., Otsuji E., Sakai T. Ibuprofen enhances TRAIL-induced apoptosis through DR5 upregulation. Oncol. Rep. 2013;30:2379–2384. doi: 10.3892/or.2013.2713. PubMed DOI

Senbabaoglu F., Cingoz A., Kaya E., Kazancioglu S., Lack N.A., Acilan C., Bagci-Onder T. Identification of Mitoxantrone as a TRAIL-sensitizing agent for Glioblastoma Multiforme. Cancer Biol. Ther. 2016;17:546–557. doi: 10.1080/15384047.2016.1167292. PubMed DOI PMC

Petrova V., Annicchiarico-Petruzzelli M., Melino G., Amelio I. The hypoxic tumour microenvironment. Oncogenesis. 2018;7 doi: 10.1038/s41389-017-0011-9. PubMed DOI PMC

Majerník M., Jendželovský R., Babinčák M., Košuth J., Ševc J., Tonelli Gombalová Z., Jendželovská Z., Buríková M., Fedoročko P. Novel Insights into the Effect of Hyperforin and Photodynamic Therapy with Hypericin on Chosen Angiogenic Factors in Colorectal Micro-Tumors Created on Chorioallantoic Membrane. Int. J. Mol. Sci. 2019;20:3004. doi: 10.3390/ijms20123004. PubMed DOI PMC

Xu K., Zhan Y., Yuan Z., Qiu Y., Wang H., Fan G., Wang J., Li W., Cao Y., Shen X., et al. Hypoxia Induces Drug Resistance in Colorectal Cancer through the HIF-1α/miR-338-5p/IL-6 Feedback Loop. Mol. Ther. 2019;27:1810–1824. doi: 10.1016/j.ymthe.2019.05.017. PubMed DOI PMC

Knoll G., Bittner S., Kurz M., Jantsch J., Ehrenschwender M. Hypoxia regulates TRAIL sensitivity of colorectal cancer cells through mitochondrial autophagy. Oncotarget. 2016;7:41488–41504. doi: 10.18632/oncotarget.9206. PubMed DOI PMC

Yao K., Gietema J.A., Shida S., Selvakumaran M., Fonrose X., Haas N.B., Testa J., O’Dwyer P.J. In vitro hypoxia-conditioned colon cancer cell lines derived from HCT116 and HT29 exhibit altered apoptosis susceptibility and a more angiogenic profile in vivo. Br. J. Cancer. 2005;93:1356–1363. doi: 10.1038/sj.bjc.6602864. PubMed DOI PMC

Bunz F., Hwang P.M., Torrance C., Waldman T., Zhang Y., Dillehay L., Williams J., Lengauer C., Kinzler K.W., Vogelstein B. Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J. Clin. Investig. 1999;104:263–269. doi: 10.1172/JCI6863. PubMed DOI PMC

Zhang L., Yu J., Park B.H., Kinzler K.W., Vogelstein B. Role of BAX in the apoptotic response to anticancer agents. Science. 2000;290:989–992. doi: 10.1126/science.290.5493.989. PubMed DOI

Aires V., Colin D.J., Doreau A., Di Pietro A., Heydel J.M., Artur Y., Latruffe N., Delmas D. P-Glycoprotein 1 Affects Chemoactivities of Resveratrol against Human Colorectal Cancer Cells. Nutrients. 2019;11:2098. doi: 10.3390/nu11092098. PubMed DOI PMC

Jendželovský R., Mikeš J., Koval’ J., Souček K., Procházková J., Kello M., Sačková V., Hofmanová J., Kozubík A., Fedoročko P. Drug efflux transporters, MRP1 and BCRP, affect the outcome of hypericin-mediated photodynamic therapy in HT-29 adenocarcinoma cells. Photochem. Photobiol. Sci. 2009;8:1716–1723. doi: 10.1039/b9pp00086k. PubMed DOI

Jendželovský R., Jendželovská Z., Kuchárová B., Fedoročko P. Breast cancer resistance protein is the enemy of hypericin accumulation and toxicity of hypericin-mediated photodynamic therapy. Biomed. Pharmacother. 2019;109:2173–2181. doi: 10.1016/j.biopha.2018.11.084. PubMed DOI

Vargová J., Mikeš J., Jendželovský R., Mikešová L., Kuchárová B., Čulka L., Fedr R., Remšík J., Souček K., Kozubík A., et al. Hypericin affects cancer side populations via competitive inhibition of BCRP. Biomed. Pharmacother. 2018;99:511–522. doi: 10.1016/j.biopha.2018.01.074. PubMed DOI

Doyle L.A., Ross D.D. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2) Oncogene. 2003;22:7340–7358. doi: 10.1038/sj.onc.1206938. PubMed DOI

Rosenberg M.F., Bikadi Z., Chan J., Liu X., Ni Z., Cai X., Ford R.C., Mao Q. The Human Breast Cancer Resistance Protein (BCRP/ABCG2) Shows Conformational Changes with Mitoxantrone. Structure. 2010;18:482–493. doi: 10.1016/j.str.2010.01.017. PubMed DOI PMC

Fetsch P.A., Abati A., Litman T., Morisaki K., Honjo Y., Mittal K., Bates S.E. Localization of the ABCG2 mitoxantrone resistance-associated protein in normal tissues. Cancer Lett. 2006;235:84–92. doi: 10.1016/j.canlet.2005.04.024. PubMed DOI

Hilovska L., Jendželovský R., Jendželovská Z., Koval’ J., Fedoročko P. Downregulation of BCRP and anti-apoptotic proteins by proadifen (SKF-525A) is responsible for the enhanced mitoxantrone accumulation and toxicity in mitoxantrone-resistant human promyelocytic leukemia cells. Int. J. Oncol. 2015;47:1572–1584. doi: 10.3892/ijo.2015.3116. PubMed DOI

He X., Wang J., Wei W., Shi M., Xin B., Zhang T., Shen X. Hypoxia regulates ABCG2 activity through the activivation of ERK1/2/HIF-1α and contributes to chemoresistance in pancreatic cancer cells. Cancer Biol. Ther. 2016;17:188–198. doi: 10.1080/15384047.2016.1139228. PubMed DOI PMC

Martin C.M., Ferdous A., Gallardo T., Humphries C., Sadek H., Caprioli A., Garcia J.A., Szweda L.I., Garry M.G., Garry D.J. Hypoxia-Inducible Factor-2α Transactivates Abcg2 and Promotes Cytoprotection in Cardiac Side Population Cells. Circ. Res. 2008;102:1075–1081. doi: 10.1161/CIRCRESAHA.107.161729. PubMed DOI

Jing X., Yang F., Shao C., Wei K., Xie M., Shen H., Shu Y. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol. Cancer. 2019;18:1–15. doi: 10.1186/s12943-019-1089-9. PubMed DOI PMC

Triner D., Shah Y.M. Hypoxia-inducible factors: A central link between inflammation and cancer. J. Clin. Investig. 2016;126:3689–3698. doi: 10.1172/JCI84430. PubMed DOI PMC

Seo S.B., Hur J.G., Kim M.J., Lee J.W., Kim H.B., Bae J.H., Kim D.W., Kang C.D., Kim S.H. TRAIL sensitize MDR cells to MDR-related drugs by down-regulation of P-glycoprotein through inhibition of DNA-PKcs/Akt/GSK-3β pathway and activation of caspases. Mol. Cancer. 2010;9:199. doi: 10.1186/1476-4598-9-199. PubMed DOI PMC

Sadarangani A., Kato S., Espinoza N., Lange S., Llados C., Espinosa M., Villalón M., Lipkowitz S., Cuello M., Owen G.I. TRAIL mediates apoptosis in cancerous but not normal primary cultured cells of the human reproductive tract. Apoptosis. 2007;12:73–85. doi: 10.1007/s10495-006-0492-z. PubMed DOI

Van Dijk M., Halpin-McCormick A., Sessler T., Samali A., Szegezdi E. Resistance to TRAIL in non-transformed cells is due to multiple redundant pathways. Cell Death Dis. 2013;4:e702. doi: 10.1038/cddis.2013.214. PubMed DOI PMC

Huang Y., Yang X., Xu T., Kong Q., Zhang Y., Shen Y., Wei Y., Wang G., Chang K.J. Overcoming resistance to TRAIL-induced apoptosis in solid tumor cells by simultaneously targeting death receptors, c-FLIP and IAPs. Int. J. Oncol. 2016;49:153–163. doi: 10.3892/ijo.2016.3525. PubMed DOI PMC

Kretz A.L., Trauzold A., Hillenbrand A., Knippschild U., Henne-Bruns D., von Karstedt S., Lemke J. Trailblazing strategies for cancer treatment. Cancers. 2019;11:456. doi: 10.3390/cancers11040456. PubMed DOI PMC

Zhang B., Liu B., Chen D., Setroikromo R., Haisma H.J., Quax W.J. Histone Deacetylase Inhibitors Sensitize TRAIL-Induced Apoptosis in Colon Cancer Cells. Cancers. 2019;11:645. doi: 10.3390/cancers11050645. PubMed DOI PMC

Sophonnithiprasert T., Nilwarangkoon S., Nakamura Y., Watanapokasin R. Goniothalamin enhances TRAIL-induced apoptosis in colorectal cancer cells through DR5 upregulation and cFLIP downregulation. Int. J. Oncol. 2015;47:2188–2196. doi: 10.3892/ijo.2015.3204. PubMed DOI

Chen M., Wang X., Zha D., Cai F., Zhang W., He Y., Huang Q., Zhuang H., Hua Z.C. Apigenin potentiates TRAIL therapy of non-small cell lung cancer via upregulating DR4/DR5 expression in a p53-dependent manner. Sci. Rep. 2016;6:35468. doi: 10.1038/srep35468. PubMed DOI PMC

Yao Z., Chen A., Li X., Zhu Z., Jiang X. Hsp90 inhibitor sensitizes TRAIL-mediated apoptosis via chop-dependent DR5 upregulation in colon cancer cells. Am. J. Transl. Res. 2017;9:4945. PubMed PMC

Rasheduzzaman M., Jeong J.K., Park S.Y. Resveratrol sensitizes lung cancer cell to TRAIL by p53 independent and suppression of Akt/NF-κB signaling. Life Sci. 2018;208:208–220. doi: 10.1016/j.lfs.2018.07.035. PubMed DOI

Dilshara M.G., Molagoda I.M.N., Jayasooriya R.G.P.T., Choi Y.H., Park C., Lee K.T., Lee S., Kim G.Y. P53-mediated oxidative stress enhances indirubin-3 -monoxime-induced apoptosis in HCT116 colon cancer cells by upregulating death receptor 5 and TNF-related apoptosis-inducing ligand expression. Antioxidants. 2019;8:423. doi: 10.3390/antiox8100423. PubMed DOI PMC

Na Y.J., Lee D.H., Kim J.L., Kim B.R., Park S.H., Jo M.J., Jeong S., Kim H.J., young Lee S., Jeong Y.A., et al. Cyclopamine sensitizes TRAIL-resistant gastric cancer cells to TRAIL-induced apoptosis via endoplasmic reticulum stress-mediated increase of death receptor 5 and survivin degradation. Int. J. Biochem. Cell Biol. 2017;89:147–156. doi: 10.1016/j.biocel.2017.06.010. PubMed DOI

Schempp C.M., Simon-Haarhaus B., Termeer C.C., Simon J.C. Hypericin photo-induced apoptosis involves the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and activation of caspase-8. FEBS Lett. 2001;493:26–30. doi: 10.1016/S0014-5793(01)02268-2. PubMed DOI

Zhang P., Wang H., Chen Y., Lodhi A.F., Sun C., Sun F., Yan L., Deng Y., Ma H. DR5 related autophagy can promote apoptosis in gliomas after irradiation. Biochem. Biophys. Res. Commun. 2020;522:910–916. doi: 10.1016/j.bbrc.2019.11.161. PubMed DOI

Fagerberg L., Hallstrom B.M., Oksvold P., Kampf C., Djureinovic D., Odeberg J., Habuka M., Tahmasebpoor S., Danielsson A., Edlund K., et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell. Proteomics. 2014;13:397–406. doi: 10.1074/mcp.M113.035600. PubMed DOI PMC

Hellwig C.T., Rehm M. TRAIL signaling and synergy mechanisms used in TRAIL-based combination therapies. Mol. Cancer Ther. 2012;11:3–13. doi: 10.1158/1535-7163.MCT-11-0434. PubMed DOI

Falschlehner C., Emmerich C.H., Gerlach B., Walczak H. TRAIL signalling: Decisions between life and death. Int. J. Biochem. Cell Biol. 2007;39:1462–1475. doi: 10.1016/j.biocel.2007.02.007. PubMed DOI

Mills K.R., Reginato M., Debnath J., Queenan B., Brugge J.S. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is required for induction of autophagy during lumen formation in vitro. Proc. Natl. Acad. Sci. USA. 2004;101:3438–3443. doi: 10.1073/pnas.0400443101. PubMed DOI PMC

Pespeni M.H., Hodnett M., Abayasiriwardana K.S., Roux J., Howard M., Broaddus V.C., Pittet J.F. Sensitization of mesothelioma cells to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by heat stress via the inhibition of the 3-phosphoinositide-dependent kinase 1/Akt pathway. Cancer Res. 2007;67:2865–2871. doi: 10.1158/0008-5472.CAN-06-3871. PubMed DOI

Li L., Wen X.Z., Bu Z.D., Cheng X.J., Xing X.F., Wang X.H., Zhang L.H., Guo T., Du H., Hu Y., et al. Paclitaxel enhances tumoricidal potential of TRAIL via inhibition of MAPK in resistant gastric cancer cells. Oncol. Rep. 2016;35:3009–3017. doi: 10.3892/or.2016.4666. PubMed DOI

Fei P., Wang W., Kim S.H., Wang S., Burns T.F., Sax J.K., Buzzai M., Dicker D.T., McKenna W.G., Bernhard E.J., et al. Bnip3L is induced by p53 under hypoxia, and its knockdown promotes tumor growth. Cancer Cell. 2004;6:597–609. doi: 10.1016/j.ccr.2004.10.012. PubMed DOI

Shao C., Li Z., Ahmad N., Liu X. Regulation of PTEN degradation and NEDD4–1 E3 ligase activity by Numb. Cell Cycle. 2017;16:957–967. doi: 10.1080/15384101.2017.1310351. PubMed DOI PMC

Jouan-Lanhouet S., Arshad M.I., Piquet-Pellorce C., Martin-Chouly C., Le Moigne-Muller G., Van Herreweghe F., Takahashi N., Sergent O., Lagadic-Gossmann D., Vandenabeele P., et al. TRAIL induces necroptosis involving RIPK1/RIPK3-dependent PARP-1 activation. Cell Death Differ. 2012;19:2003–2014. doi: 10.1038/cdd.2012.90. PubMed DOI PMC

Luebke T., Schwarz L., Beer Y.Y., Schumann S., Misterek M., Sander F.E., Plaza-Sirvent C., Schmitz I. c-FLIP and CD95 signaling are essential for survival of renal cell carcinoma. Cell Death Dis. 2019;10:1–12. doi: 10.1038/s41419-019-1609-y. PubMed DOI PMC

Cox J., Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008;26:1367–1372. doi: 10.1038/nbt.1511. PubMed DOI

Cox J., Neuhauser N., Michalski A., Scheltema R.A., Olsen J.V., Mann M. Andromeda: A Peptide Search Engine Integrated into the MaxQuant Environment. J. Proteome Res. 2011;10:1794–1805. doi: 10.1021/pr101065j. PubMed DOI

Ye J., Coulouris G., Zaretskaya I., Cutcutache I., Rozen S., Madden T.L. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012;13:134. doi: 10.1186/1471-2105-13-134. PubMed DOI PMC

Okonechnikov K., Golosova O., Fursov M., Varlamov A., Vaskin Y., Efremov I., German Grehov O.G., Kandrov D., Rasputin K., Syabro M., et al. Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics. 2012;28:1166–1167. doi: 10.1093/bioinformatics/bts091. PubMed DOI

R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2020.

Venables W.N., Ripley B.D. Modern Applied Statistics with S. 4th ed. Springer; New York, NY, USA: 2002.

Wickham H. Reshaping Data with the {reshape} Package. J. Stat. Softw. 2007;21:1–20. doi: 10.18637/jss.v021.i12. DOI

Sarkar D. Lattice: Multivariate Data Visualization with R. Springer; New York, NY, USA: 2008.

Clark N., Hafner M., Kouril M., Muhlich J., Niepel M., Williams E., Sorger P., Medvedovic M. GRcalculator: An online tool for calculating and mining drug response data. BMC Cancer. :2017. doi: 10.1186/s12885-017-3689-3. PubMed DOI PMC

Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer; New York, NY, USA: 2016.

Auguie B. Miscellaneous Functions for “Grid” Graphics. R Foundation for Statistical Computing; Vienna, Austria: 2017.

Sievert C. Plotly for R. R Foundation for Statistical Computing; Vienna, Austria: 2018.

Xiao N. ggsci: Scientific Journal and Sci-Fi Themed Color Palettes for ‘ggplot2’. R Foundation for Statistical Computing; Vienna, Austria: 2018.

Wickham H., Averick M., Bryan J., Chang W., McGowan L.D., François R., Grolemund G., Hayes A., Henry L., Hester J., et al. Welcome to the {tidyverse} J. Open Source Softw. 2019;4:1686. doi: 10.21105/joss.01686. DOI

Wickham H., François R., Henry L., Müller K. Dplyr: A Grammar of Data Manipulation. R Foundation for Statistical Computing; Vienna, Austria: 2020.

R Core Team . Foreign: Read Data Stored by ‘Minitab’, ‘S’, ‘SAS’, ‘SPSS’, ‘Stata’, ‘Systat’, ‘Weka’, ‘dBase’,... R Foundation for Statistical Computing; Vienna, Austria: 2020.

Wickham H., Henry L. Tidyr: Tidy Messy Data. R Foundation for Statistical Computing; Vienna, Austria: 2020.

Wickham H. Forcats: Tools for Working with Categorical Variables (Factors) R Foundation for Statistical Computing; Vienna, Austria: 2020.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace