A Novel Low-Risk Germline Variant in the SH2 Domain of the SRC Gene Affects Multiple Pathways in Familial Colorectal Cancer

. 2021 Apr 01 ; 11 (4) : . [epub] 20210401

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33916261

Grantová podpora
COST Action CA17118 European Cooperation in Science and Technology
TRANSCAN ERA-NET Bundesministerium für Bildung und Forschung
856620 Horizon 2020

Colorectal cancer (CRC) shows one of the largest proportions of familial cases among different malignancies, but only 5-10% of all CRC cases are linked to mutations in established predisposition genes. Thus, familial CRC constitutes a promising target for the identification of novel, high- to moderate-penetrance germline variants underlying cancer susceptibility by next generation sequencing. In this study, we performed whole genome sequencing on three members of a family with CRC aggregation. Subsequent integrative in silico analysis using our in-house developed variant prioritization pipeline resulted in the identification of a novel germline missense variant in the SRC gene (V177M), a proto-oncogene highly upregulated in CRC. Functional validation experiments in HT-29 cells showed that introduction of SRCV177M resulted in increased cell proliferation and enhanced protein expression of phospho-SRC (Y419), a potential marker for SRC activity. Upregulation of paxillin, β-Catenin, and STAT3 mRNA levels, increased levels of phospho-ERK, CREB, and CCND1 proteins and downregulation of the tumor suppressor p53 further proposed the activation of several pathways due to the SRCV177M variant. The findings of our pedigree-based study contribute to the exploration of the genetic background of familial CRC and bring insights into the molecular basis of upregulated SRC activity and downstream pathways in colorectal carcinogenesis.

Zobrazit více v PubMed

Frank C., Fallah M., Ji J., Sundquist J., Hemminki K. The population impact of familial cancer, a major cause of cancer. Int. J. Cancer. 2013;134:1899–1906. doi: 10.1002/ijc.28510. PubMed DOI

Weren R.D., Ligtenberg M.J., Kets C.M., De Voer R.M., Verwiel E.T., Spruijt L., van Zelst-Stams W.A., Jongmans M.C., Gilissen C., Hehir-Kwa J.Y., et al. A germline homozygous mutation in the base-excision repair gene NTHL1 causes adenomatous polyposis and colorectal cancer. Nat. Genet. 2015;47:668–671. doi: 10.1038/ng.3287. PubMed DOI

Kuiper R.P., Hoogerbrugge N. NTHL1 defines novel cancer syndrome. Oncotarget. 2015;6:34069–34070. doi: 10.18632/oncotarget.5864. PubMed DOI PMC

Yan H.H.N., Lai J.C.W., Ho S.L., Leung W.K., Law W.L., Lee J.F.Y., Chan A.K.W., Tsui W.Y., Chan A.S.Y., Lee B.C.H., et al. RNF43 germline and somatic mutation in serrated neoplasia pathway and its association with BRAF mutation. Gut. 2016;66:1645–1656. doi: 10.1136/gutjnl-2016-311849. PubMed DOI

Gala M.K., Mizukami Y., Le L.P., Moriichi K., Austin T., Yamamoto M., Lauwers G.Y., Bardeesy N., Chung D.C. Germline Mutations in Oncogene-Induced Senescence Pathways Are Associated with Multiple Sessile Serrated Adenomas. Gastroenterology. 2014;146:520–529.e6. doi: 10.1053/j.gastro.2013.10.045. PubMed DOI PMC

Briggs S., Tomlinson I. Germline and somatic polymerase epsilon and delta mutations define a new class of hypermutated colorectal and endometrial cancers. J. Pathol. 2013;230:148–153. doi: 10.1002/path.4185. PubMed DOI PMC

Palles C., Cazier J.B., Howarth K.M., Domingo E., Jones A.M., Broderick P., Kemp Z., Spain S.L., Guarino E., Salguero I., et al. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carci-nomas. Nat. Genet. 2013;45:136–144. doi: 10.1038/ng.2503. PubMed DOI PMC

Valle L., de Voer R.M., Goldberg Y., Sjursen W., Försti A., Ruiz-Ponte C., Caldés T., Garré P., Olsen M.F., Nordling M., et al. Update on genetic predisposition to colorectal cancer and polyposis. Mol. Asp. Med. 2019;69:10–26. doi: 10.1016/j.mam.2019.03.001. PubMed DOI

Jasperson K.W., Tuohy T.M., Neklason D.W., Burt R.W. Hereditary and Familial Colon Cancer. Gastroenterology. 2010;138:2044–2058. doi: 10.1053/j.gastro.2010.01.054. PubMed DOI PMC

Lorans M., Dow E., Macrae F.A., Winship I.M., Buchanan D.D. Update on Hereditary Colorectal Cancer: Improving the Clinical Utility of Multigene Panel Testing. Clin. Color. Cancer. 2018;17:e293–e305. doi: 10.1016/j.clcc.2018.01.001. PubMed DOI

Bandapalli O.R., Paramasivam N., Giangiobbe S., Kumar A., Benisch W., Engert A., Witzens-Harig M., Schlesner M., Hemminki K., Försti A. Whole genome sequencing reveals DICER1 as a candidate predisposing gene in familial Hodgkin lymphoma. Int. J. Cancer. 2018;143:2076–2078. doi: 10.1002/ijc.31576. PubMed DOI

Kumar A., Bandapalli O.R., Paramasivam N., Giangiobbe S., Diquigiovanni C., Bonora E., Eils R., Schlesner M., Hemminki K., Försti A. Familial Cancer Variant Prioritization Pipeline version 2 (FCVPPv2) applied to a papillary thyroid cancer family. Sci. Rep. 2018;8:1–12. doi: 10.1038/s41598-018-29952-z. PubMed DOI PMC

Srivastava A., Kumar A., Giangiobbe S., Bonora E., Hemminki K., Forsti A., Bandapalli O.R. Whole Genome Sequencing of Fa-milial Non-Medullary Thyroid Cancer Identifies Germline Alterations in MAPK/ERK and PI3K/AKT Signaling Pathways. Biomolecules. 2019;9:605. doi: 10.3390/biom9100605. PubMed DOI PMC

Lahiri D.K., Schnabel B. DNA isolation by a rapid method from human blood samples: Effects of MgCl2, EDTA, storage time, and temperature on DNA yield and quality. Biochem. Genet. 1993;31:321–328. doi: 10.1007/BF00553174. PubMed DOI

Li H., Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC

Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27:2987–2993. doi: 10.1093/bioinformatics/btr509. PubMed DOI PMC

Rimmer A., Phan H., Mathieson I., Iqbal Z., Twigg S.R., Consortium W.G.S., Wilkie A.O., McVean G., Lunter G. Integrating map-ping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications. Nat. Genet. 2014;46:912–918. doi: 10.1038/ng.3036. PubMed DOI PMC

Wang K., Li M., Hakonarson H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164. doi: 10.1093/nar/gkq603. PubMed DOI PMC

Genomes Project C., Auton A., Brooks L.D., Durbin R.M., Garrison E.P., Kang H.M., Korbel J.O., Marchini J.L., McCarthy S., McVean G.A., et al. A global reference for human genetic variation. Nature. 2015;526:68–74. PubMed PMC

Smigielski E.M., Sirotkin K., Ward M., Sherry S.T. dbSNP: A database of single nucleotide polymorphisms. Nucleic Acids Res. 2000;28:352–355. doi: 10.1093/nar/28.1.352. PubMed DOI PMC

Lek M., Karczewski K.J., Minikel E.V., Samocha K.E., Banks E., Fennell T., O’Donnell-Luria A.H., Ware J.S., Hill A.J., Cummings B.B., et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–291. doi: 10.1038/nature19057. PubMed DOI PMC

Kircher M., Witten D.M., Jain P., O’Roak B.J., Cooper G.M., Shendure J. A general framework for estimating the relative patho-genicity of human genetic variants. Nat. Genet. 2014;46:310–315. doi: 10.1038/ng.2892. PubMed DOI PMC

Cooper G.M., Stone E.A., Asimenos G., Green E.D., Batzoglou S., Sidow A. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res. 2005;15:901–913. doi: 10.1101/gr.3577405. PubMed DOI PMC

Siepel A., Bejerano G., Pedersen J.S., Hinrichs A.S., Hou M., Rosenbloom K., Clawson H., Spieth J., Hillier L.W., Richards S., et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 2005;15:1034–1050. doi: 10.1101/gr.3715005. PubMed DOI PMC

Petrovski S., Wang Q., Heinzen E.L., Allen A.S., Goldstein D.B. Genic intolerance to functional variation and the interpretation of personal genomes. PLoS Genet. 2013;9:e1003709. doi: 10.1371/annotation/32c8d343-9e1d-46c6-bfd4-b0cd3fb7a97e. PubMed DOI PMC

Ward L.D., Kellis M. HaploReg: A resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 2012;40:D930–D934. doi: 10.1093/nar/gkr917. PubMed DOI PMC

Liu X., Wu C., Li C., Boerwinkle E. dbNSFP v3.0: A One-Stop Database of Functional Predictions and Annotations for Human Nonsynonymous and Splice-Site SNVs. Hum. Mutat. 2016;37:235–241. doi: 10.1002/humu.22932. PubMed DOI PMC

Karczewski K., Francioli L., Tiao G., Cummings B., Alföldi J., Wang Q., Collins R., Laricchia K., Ganna A., Birnbaum D., et al. Vari-ation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human pro-tein-coding genes. bioRxiv. 2019 doi: 10.1101/531210. DOI

Tamborero D., Rubio-Perez C., Deu-Pons J., Schroeder M.P., Vivancos A., Rovira A., Tusquets I., Albanell J., Rodon J., Tabernero J., et al. Cancer Genome Interpreter annotates the biological and clinical relevance of tumor alterations. Genome Med. 2018;10:1–8. doi: 10.1186/s13073-018-0531-8. PubMed DOI PMC

Hecht M., Bromberg Y., Rost B. Better prediction of functional effects for sequence variants. BMC Genom. 2015;16:S1. doi: 10.1186/1471-2164-16-S8-S1. PubMed DOI PMC

Stelzer G., Rosen N., Plaschkes I., Zimmerman S., Twik M., Fishilevich S., Stein T.I., Nudel R., Lieder I., Mazor Y., et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr. Protoc. Bioinform. 2016;54:1.30.1–1.30.33. doi: 10.1002/cpbi.5. PubMed DOI

Marengere L.E.M., Pawson T. Structure and function of SH2 domains. J. Cell Sci. 1994;1994:97–104. doi: 10.1242/jcs.1994.Supplement_18.14. PubMed DOI

Waksman G., Kominos D., Robertson S.C., Pant N., Baltimore D., Birge R.B., Cowburn D., Hanafusa H., Mayer B.J., Overduin M., et al. Crystal structure of the phosphotyrosine recognition domain SH2 of v-src complexed with tyrosine-phosphorylated pep-tides. Nature. 1992;358:646–653. doi: 10.1038/358646a0. PubMed DOI

Hunt S.E., McLaren W., Gil L., Thormann A., Schuilenburg H., Sheppard D., Parton A., Armean I.M., Trevanion S.J., Flicek P., et al. Ensembl variation resources. Database. 2018;2018 doi: 10.1093/database/bay119. PubMed DOI PMC

Turro E., Greene D., Wijgaerts A., Thys C., Lentaigne C., Bariana T.K., Westbury S.K., Kelly A.M., Selleslag D., Stephens J.C., et al. A dominant gain-of-function mutation in universal tyrosine kinase SRC causes thrombocytopenia, myelofibrosis, bleeding, and bone pathologies. Sci. Transl. Med. 2016;8:328–330. doi: 10.1126/scitranslmed.aad7666. PubMed DOI PMC

Gargalionis A.N., Karamouzis M.V., Papavassiliou A.G. The molecular rationale of Src inhibition in colorectal carcinomas. Int. J. Cancer. 2014;134:2019–2029. doi: 10.1002/ijc.28299. PubMed DOI

Barraclough J., Hodgkinson C., Hogg A., Dive C., Welman A. Increases in c-Yes Expression Level and Activity Promote Motility but Not Proliferation of Human Colorectal Carcinoma Cells. Neoplasia. 2007;9:745-IN32. doi: 10.1593/neo.07442. PubMed DOI PMC

Wiener J.R., Windham T.C., Estrella V.C., Parikh N.U., Thall P.F., Deavers M.T., Bast R.C., Mills G.B., Gallick G.E. Activated SRC pro-tein tyrosine kinase is overexpressed in late-stage human ovarian cancers. Gynecol. Oncol. 2003;88:73–79. doi: 10.1006/gyno.2002.6851. PubMed DOI

Wheeler D.L., Iida M., Dunn E.F. The Role of Src in Solid Tumors. Oncologist. 2009;14:667–678. doi: 10.1634/theoncologist.2009-0009. PubMed DOI PMC

Leonetti E., Gesualdi L., Scheri K.C., DiNicola S., Fattore L., Masiello M.G., Cucina A., Mancini R., Bizzarri M., Ricci G., et al. c-Src Recruitment is Involved in c-MET-Mediated Malignant Behaviour of NT2D1 Non-Seminoma Cells. Int. J. Mol. Sci. 2019;20:320. doi: 10.3390/ijms20020320. PubMed DOI PMC

Rahman N. Realizing the promise of cancer predisposition genes. Nat. Cell Biol. 2014;505:302–308. doi: 10.1038/nature12981. PubMed DOI PMC

Schaller M.D., Parsons J.T. pp125FAK-dependent tyrosine phosphorylation of paxillin creates a high-affinity binding site for Crk. Mol. Cell. Biol. 1995;15:2635–2645. doi: 10.1128/MCB.15.5.2635. PubMed DOI PMC

Feller S.M. Crk family adaptors–signalling complex formation and biological roles. Oncogene. 2001;20:6348–6371. doi: 10.1038/sj.onc.1204779. PubMed DOI

Lamorte L., Rodrigues S., Sangwan V., Turner C.E., Park M. Crk associates with a multimolecular Paxillin/GIT2/beta-PIX com-plex and promotes Rac-dependent relocalization of Paxillin to focal contacts. Mol. Biol. Cell. 2003;14:2818–2831. doi: 10.1091/mbc.e02-08-0497. PubMed DOI PMC

Lesslie D.P., Summy J.M., Parikh N.U., Fan F., Trevino J.G., Sawyer T.K., Metcalf C.A., Shakespeare W.C., Hicklin D.J., Ellis L.M., et al. Vascular endothelial growth factor receptor-1 mediates migration of human colorectal carcinoma cells by activation of Src family kinases. Br. J. Cancer. 2006;94:1710–1717. doi: 10.1038/sj.bjc.6603143. PubMed DOI PMC

Cao X., Tay A., Guy G.R., Tan Y.H. Activation and association of Stat3 with Src in v-Src-transformed cell lines. Mol. Cell. Biol. 1996;16:1595–1603. doi: 10.1128/MCB.16.4.1595. PubMed DOI PMC

Bowman T., Broome M.A., Sinibaldi D., Wharton W., Pledger W.J., Sedivy J.M., Irby R., Yeatman T., Courtneidge S.A., Jove R. Stat3-mediated Myc expression is required for Src transformation and PDGF-induced mitogenesis. Proc. Natl. Acad. Sci. USA. 2001;98:7319–7324. doi: 10.1073/pnas.131568898. PubMed DOI PMC

Yu C., Meyer D., Campbell G., Larner A., Carter-Su C., Schwartz J., Jove R. Enhanced DNA-binding activity of a Stat3-related protein in cells transformed by the Src oncoprotein. Science. 1995;269:81–83. doi: 10.1126/science.7541555. PubMed DOI

Boussios S., Ozturk M.A., Moschetta M., Karathanasi A., Zakynthinakis-Kyriakou N., Katsanos K.H., Christodoulou D.K., Pavlidis N. The Developing Story of Predictive Biomarkers in Colorectal Cancer. J. Pers. Med. 2019;9:12. doi: 10.3390/jpm9010012. PubMed DOI PMC

Carpenter R.L., Lo H.-W. STAT3 Target Genes Relevant to Human Cancers. Cancers. 2014;6:897–925. doi: 10.3390/cancers6020897. PubMed DOI PMC

Niu G., Wright K.L., Ma Y., Wright G.M., Huang M., Irby R., Briggs J., Karras J., Cress W.D., Pardoll D., et al. Role of Stat3 in regu-lating p53 expression and function. Mol. Cell. Biol. 2005;25:7432–7440. doi: 10.1128/MCB.25.17.7432-7440.2005. PubMed DOI PMC

Oving I.M., Clevers H.C. Molecular causes of colon cancer. Eur. J. Clin. Investig. 2002;32:448–457. doi: 10.1046/j.1365-2362.2002.01004.x. PubMed DOI

Diehl J.A. Cycling to cancer with cyclin D1. Cancer Biol. Ther. 2002;1:226–231. doi: 10.4161/cbt.72. PubMed DOI

Chen J., ElFiky A., Han M., Chen C., Saif M.W. The Role of Src in Colon Cancer and Its Therapeutic Implications. Clin. Color. Cancer. 2014;13:5–13. doi: 10.1016/j.clcc.2013.10.003. PubMed DOI

Chen R., Kim O., Yang J., Sato K., Eisenmann K.M., McCarthy J., Chen H., Qiu Y. Regulation of Akt/PKB Activation by Tyrosine Phosphorylation. J. Biol. Chem. 2001;276:31858–31862. doi: 10.1074/jbc.C100271200. PubMed DOI

Datta K., Bellacosa A., Chan T.O., Tsichlis P.N. Akt Is a Direct Target of the Phosphatidylinositol 3-Kinase. J. Biol. Chem. 1996;271:30835–30839. doi: 10.1074/jbc.271.48.30835. PubMed DOI

Irby R.B., Mao W., Coppola D., Kang J., Loubeau J.M., Trudeau W., Karl R., Fujita D.J., Jove R., Yeatman T.J. Activating SRC muta-tion in a subset of advanced human colon cancers. Nat. Genet. 1999;21:187–190. doi: 10.1038/5971. PubMed DOI

Irby R.B., Yeatman T.J. Role of Src expression and activation in human cancer. Oncogene. 2000;19:5636–5642. doi: 10.1038/sj.onc.1203912. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Familial colorectal cancer: search for novel predisposition genes

. 2025 Dec 30 ; 20 (1) : 22. [epub] 20251230

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...